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It is theoretically shown that tripartite entanglement with different wavelengths can be generated by cas-
caded nonlinear interaction in an optical parametric oscillator cavity with parametric down conversion and
sum-frequency generation. A sufficient inseparability criterion for continuous-variable tripartite entanglement
proposed by van Loock and Furusawa was used to evaluate the degree of the quadrature-phase amplitude
correlations between the three modes. The dependences of correlation on the cavity parameters and pump
intensity are discussed.
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I. INTRODUCTION

Quantum entanglement is the basic resource in quantum
communication and computation. The generation of quantum
entanglement becomes an essential research of quantum in-
formation science and attracts many interests. There are sev-
eral kinds of experimental realization of entangled states, in
which the optical parametric process is one of the most effi-
cient techniques. For example, the bipartite entangled states
which have been used in quantum teleportationf1–3g and
dense codingf4g are generated by optical parametric ampli-
fier sOPAd. Recently other interesting means have been pro-
posed to produce a two-mode entangled state using the triply
resonant type-II second-harmonic generationsSHGd system
f5,6g. Besides its application in quantum teleportation and
dense coding, the entanglement shared by two parties has
also been realized as a valuable resource for cryptography
f7,8g, tomography of statef9,10g, etc. With the development
of science and technology, entanglement between more than
two particles is going to be the key ingredient for advanced
multiparty quantum communication of quantum teleportation
network f11g, telecloningf12,13g, and controlled dense cod-
ing f14,15g.

Continuous-variablesCVd tripartite entanglement was ap-
plied in the quantum teleportation experiment in 1998f1g.
van Loock and Braunstein showed theoretically that using
single-mode squeezed states and linear optics suffices to pro-
duce a trulyN-partite entangled statef11g, and the experi-
mental accessible criterion to verify the full inseparability of
entangled state is thus proposed in their workf11g and other
published worksf16,17g. In addition, a method to produce a
three-mode entangled state of bright optical field by distrib-
uting a two-mode squeezed state using beam splitters has
been demonstratedf14,15g.

Quite recently, the generation of multipartite entangle-
ment in a nonlinear optical material with parametric process
draws much attention. It is shown theoretically that concur-
rent interaction in a second-order nonlinear medium placed
in an optical resonator can generate multipartite entangle-
mentf18g. The generation of full inseparable three-mode en-

tangled states by interlinked interactions in axs2d medium
has been addressed and the preliminary experimental results
have been presented toof19g. Based on it, we propose a
scheme to produce tripartite entangled states via parametric
down conversion sPDCd and sum-frequency generation
sSFGd in a xs2d medium in an optical parametric oscillator.
Compared to the scheme described above in Ref.f19g, the
resonant optical cavity is used to improve nonlinear coupling
efficiency and the output field is a state with correlated
quadrature-phase amplitude fluctuations. Furthermore, the
three light modes of the entangled state with different wave-
lengths are acquired. Such phase-matching conditions for
both interactions can also hopefully be realized by placing
two nonlinear optical crystals or one quasiperiodic optical
superlattice crystal into a cavityf18,20g. The dynamical be-
havior of a self-phase-locked OPO induced by two compet-
ing nonlinearities in periodic poled lithiumniobatesPPLNd
has been demonstrated, and the potential application of such
competing nonlinear process to produce multipartite en-
tanglement has also been analyzedf21g.

II. EQUATIONS OF MOTION AND THE SOLUTION
OF OUTPUT FIELD

The system consists of a one-sided cavity with three
modesa1, a2, a3 and one crystal, which provides the two
interactions of parametric down conversion and sum-
frequency generationsFig. 1d. The input and output fields of
cavity are coupled through the mirrorM. Pumpa4 is incident
upon the optical medium to create fieldsa1 and a3 by the
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FIG. 1. Sketch of the OPO.a4, a5 are pump beams. Pumpa4

creates fieldsa1 anda3 by the process of parametric down conver-
sion, and simultaneously pumpa5 and field a3 produce sum-
frequency fielda2. aj

in sj =1,2,3d are the incoming fields.aj
out are the

corresponding outgoing fields.
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process of parametric down conversion, and simultaneously
the other pumpa5 interacts with fielda3 to produce sum-
frequency fielda2. The frequencies of the pump beams are
degenerated, their polarizations are chosen according to the
phase-matching conditions. The energy-matching conditions
arev4=v1+v3,v2=v3+v5.

The interaction Hamiltonian for this system is given by
f22g

ĤI = si"k1â1
+â3

+e−iv4t + i"k2â3â2
+e−iv5td + H.c. s1d

k1,2 are proportional to the nonlinear susceptibility and pump
intensity f19g and are taken to be real commonlyf23g.

Following the standard procedure in the Heisenberg pic-
ture f24g, the quantum Langevin equations of motion for the
three cavity modes can be expressed as

t
dâ1

+

dt
= iv1tâ1

+ + k1â3e
iv4t − g1â1

+ + Î2g1â1
+in,

t
dâ2

dt
= − iv2tâ2 + k2â3e

−iv5t − g2â2 + Î2g2â2
in,

t
dâ3

dt
= − iv3tâ3 + k1â1

+e−iv4t − k2â2e
iv5t − g1â3 + Î2g1â3

in,

s2d

wheret is the cavity round-trip time,t=2L /c, L is the ef-
fective cavity length, andc is the speed of light in vacuum.
We assumet is the same for all three fields.aj

in sj =1,2,3d are
the operators corresponding to input fields to the cavity.g is
the damping rate. For simplicity, supposing all of the internal
losses of the system are leakage via mirrorM with damping
constantsg j which are related to the amplitude reflection
coefficientsr j and the amplitude transmission coefficientstj

approximately, r j =1−g j , tj =Î2g j. Considering the two
modesa1, a3 are nearly frequency degenerate, we assume
the damping rates to be identicalg1=g3.

In order to solve Eq.s2d, we transform it into a rotating
framef23g and use the Fourier transformation, then the rela-
tionship between the output quantities and the input quanti-

ties can be calculated from the boundary conditionsÂj
out

+Âj
in=Î2g jÂj at the mirrorf22g,

ÂoutsVd = fBsiVtI − Md−1B − IgÂinsVd, s3d

with

ÂoutsVd =1Â1
+outs− Vd

Â2
outsVd

Â3
outsVd

2 ,

M = 1iVt + g1 0 − k1

0 iVt + g2 − k2

− k1 k2 iVt + g1
2 ,

I = 11 0 0

0 1 0

0 0 1
2, B = 1

Î2g1 0 0

0 Î2g2 0

0 0 Î2g1

2 ,

ÂinsVd =1Â1
+ins− Vd

Â2
insVd

Â3
insVd

2 .

III. QUANTUM CORRELATIONS AMONG THE
QUADRATURE-PHASE

AMPLITUDES OF THE THREE MODES

To study the entanglement characteristics of fields, we
need to look at the fluctuations of quadrature amplitude and
phase components defined by

X̂j
outsVd = Âj

+outs− Vd + Âj
outsVd,

Ŷj
outsVd = ifÂj

+outs− Vd − Âj
outsVdg. s4d

Then we rewrite Eq.s3d as

X̂1
outsV8d = G1sV8dX̂1

insV8d − gsV8dX̂2
insV8d + hsV8dX̂3

insV8d,

X̂2
outsV8d = gsV8dX̂1

insV8d + G2sV8dX̂2
insV8d + fsV8dX̂3

insV8d,

X̂3
outsV8d = hsV8dX̂1

insV8d − fsV8dX̂2
insV8d + G3sV8dX̂3

insV8d,

Ŷ1
outsV8d = G1sV8dŶ1

insV8d + gsV8dŶ2
insV8d − hsV8dŶ3

insV8d,

Ŷ2
outsV8d = − gsV8dŶ1

insV8d + G2sV8dŶ2
insV8d + fsV8dŶ3

insV8d,

Ŷ3
outsV8d = − hsV8dŶ1

insV8d − fsV8dŶ2
insV8d + G3sV8dŶ3

insV8d
s5d

with

G1sV8d = fg1
2g2s1 + s2 + V82d + g1

3j2s1 − iV8d

+ iV8g1
3s1 + s2 + V82dg/D,

G2sV8d = fsig1
3V8 − g1

2g2ds− i + V8d2 − ig1
3j2s− i + V8d

+ sig1
3V8 − g1

2g2ds2g/D,

G3sV8d = f− ig1
3j2s− i + V8d + sg1

2g2 + ig1
3V8ds1 + s2

+ V82dg/D,

gsV8d = 2sjg1
2Îg1g2/D,

hsV8d = 2g1
2ssg2 + ig1V8d/D,

fsV8d = 2g1jsg1 + ig1V8dÎg1g2/D,
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D = g1
2j2sg1 + ig1V8d − g1

2s2sg2 + ig1V8d

+ sg1 + ig1V8d2sg2 + ig1V8d.

VariablesV8 , s , j are defined asV8=Vt /g1, s=k1/g1, j
=k2/g1. V8 is the normalized frequency.s is the pump pa-
rameter including both pump power and nonlinear coefficient
xs2d for down conversion,s=1 corresponds to the threshold
point.j is the pump parameter of the sum-frequency process.
If we set j=0, that means the model is just a double reso-
nating nondegenerate PDC and no SFG. The gainsG1sVd
and G3sVd of the two fieldsa1, a3 depend on the pump
strength and can be extremely large as the threshold is ap-
proachedss→1d and V8→0. Actually, if s→1 and V8
→0, the two modes of down conversion are perfectly en-
tangled. WhenjÞ0, it is a process with both PDC and SFG,
the partial energy conversion from thea3 field to thea2 field.
And the tripartite entanglement should be obtained.

IV. FULL INSEPARABILITY OF THE OUTPUT LIGHT
FIELDS

A sufficient inseparability criterion for CV tripartite en-
tanglement has been proposed by van Loock and Furusawa
f16g:

kd2sX̂1 − X̂2dl + kd2sŶ1 + Ŷ2 + g3Ŷ3dl , 4,

kd2sX̂2 − X̂3dl + kd2sg1Ŷ1 + Ŷ2 + Ŷ3dl , 4,

kd2sX̂1 − X̂3dl + kd2sŶ1 + g2Ŷ2 + Ŷ3dl , 4, s6d

where g1, g2, g3 are scaling factors. Choosing adjustable
scaling factors can minimize the quantities of the left side.
The satisfaction of any pair of the inequalities is sufficient
for full inseparability of three-party entanglement. The
smaller the values of the left-hand side of the inequalities
are, the larger the correlation degree that we will obtain.

So to quantify the degree of the correlation, we introduce
the correlation spectra of the total phase quadratures of three-
mode and relative amplitude quadratures:

ŜX1−X2

out = kfX̂1
outsV8d − X̂2

outsV8dgfX̂1
outsV8d − X̂2

outsV8dg+l

= uG1sV8d − gsV8du2 + ugsV8d + G2sV8du2 + uhsV8d

− fsV8du2,

ŜX1−X3

out = kfX̂1
outsV8d − X̂3

outsV8dgfX̂1
outsV8d − X̂3

outsV8dg+l

= uG1sV8d − hsV8du2 + ufsV8d − gsV8du2 + uhsV8d

− G3sV8du2,

ŜX2−X3

out = kfX̂2
outsV8d − X̂3

outsV8dgfX̂2
outsV8d − X̂3

outsV8dg+l

= ugsV8d − hsV8du2 + uG2sV8d + fsV8du2 + ufsV8d

− G3sV8du2,

Ŝg1Y1+Y2+Y3

out = kfg1Ŷ1
outsV8d + Ŷ2

outsV8d + Ŷ3
outsV8dgfg1Ŷ1

outsV8d

+ Ŷ2
outsV8d + Y3

outsV8dg+l

= ug1G1sV8d − gsV8d − hsV8du2 + ug1gsV8d

+ G2sV8d − fsV8du2 + u− g1hsV8d + fsV8d

+ G3sV8du2,

ŜY1+g2Y2+Y3

out = kfŶ1
outsV8d + g2Ŷ2

outsV8d + Ŷ3
outsV8dgfŶ1

outsV8d

+ g2Ŷ2
outsV8d + Y3

outsV8dg+l

= uG1sV8d − g2gsV8d − hsV8du2 + ugsV8d

+ g2G2sV8d − fsV8du2 + u− hsV8d + g2fsV8d

+ G3sV8du2,

ŜY1+Y2+g3Y3

out = kfŶ1
outsV8d + Ŷ2

outsV8d + g3Ŷ3
outsV8dgfŶ1

outsV8d

+ Ŷ2
outsV8d + g3Y3

outsV8dg+l

= uG1sV8d − gsV8d − g3hsV8du2 + ugsV8d + G2sV8d

− g3fsV8du2 + u− hsV8d + fsV8d + g3G3sV8du2.

s7d

The spectra for the three correlation functions of the three
modes described in Eq.s7d vs normalized analyzing fre-
quency are plotted in Fig. 2 ats=0.6 andj=1. The curves

sad, sbd, and scd are for the correlation degrees ofŜX2−X3

out

+Ŝg1Y1+Y2+Y3

out , ŜX1−X2

out +ŜY1+Y2+g3Y3

out , ŜX1−X3

out +ŜY1+g2Y2+Y3

out , respec-
tively. It can be seen that all of the three correlation values
are below the limit 4, which shows that the correlations for
three modes always exist in a wide frequency range, and the
large correlations can be achieved at low analyzing fre-
quency. Figure 3 shows the dependences of the three corre-

lation spectraŜX2−X3

out +Ŝg1Y1+Y2+Y3

out , ŜX1−X2

out +ŜY1+Y2+g3Y3

out , ŜX1−X3

out

+ŜY1+g2Y2+Y3

out on pump parameters for j=1 andV8=0.8. The
inseparability criterion is satisfied for the pump power at
threshold and below threshold. The best correlations
for all three modes can be obtained roughly ats<0.7.

The three correlation spectraŜX2−X3

out +Ŝg1Y1+Y2+Y3

out , ŜX1−X2

out

FIG. 2. The quantum correlation spectra ofŜX2−X3

out +Ŝg1Y1+Y2+Y3

out

fcurve sadg, ŜX1−X2

out +ŜY1+Y2+g3Y3

out fcurve sbdg, and ŜX1−X3

out +ŜY1+g2Y2+Y3

out

fcurve scdg versus normalized frequencyV8sV8=vt /g1d for g1

=0.02,g2=0.03,s=0.6, j=1. g has been chosen to minimize the
variances.
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+ŜY1+Y2+g3Y3

out , ŜX1−X3

out +ŜY1+g2Y2+Y3

out versus pump parameterj
for s=0.7 andV8=0.8 are displayed in Fig. 4. The correla-
tion degree between the two modes produced by parametric
down conversion is largest forj=0, meanwhile the correla-
tions between the other two modes do not exist. The corre-
lation between the two modes produced by parametric down
conversion is smaller and the correlations between the other
two modes are larger with the increasing of pump parameter
j. The largest entanglement is acquired forj around 1. And
from both Figs. 2 and 3, we can see that the degree of cor-
relation between the two modes produced by parametric
down conversion is larger than correlations between the
other two modes.

V. CONCLUSIONS

A scheme to generate tripartite entangled states based on
cascaded nonlinear processes is proposed. The inseparability

of the three output fields is verified theoretically, and the
correlations of quadrature phases between three modes are
discussed. The experimental realization of this scheme is de-
sirable with a compact OPO in which twoxs2d nonlinear
mediums or a PPLN crystal is used. On the other hand, the
entangled three output fields can be in different frequency.
All of these properties make the scheme very significant for
the application in quantum communication.
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FIG. 4. The quantum correlation spectra as functions of pump
parameter jsj=k2/g1d for g1=0.02,g2=0.03,s=0.7, and V8
=0.8. sad ŜX2−X3

out +Ŝg1Y1+Y2+Y3

out , sbd ŜX1−X2

out +ŜY1+Y2+g3Y3

out , scd ŜX1−X3

out

+ŜY1+g2Y2+Y3

out .

FIG. 3. The quantum correlation spectra ofŜX2−X3

out +Ŝg1Y1+Y2+Y3

out

fcurve sadg, ŜX1−X2

out +ŜY1+Y2+g3Y3

out fcurve sbdg, and ŜX1−X3

out +ŜY1+g2Y2+Y3

out

fcurve scdg as functions of pump parametersss=k1/g1d , g1

=0.02,g2=0.03,j=1, andV8=0.8. s=1 corresponds to the oscil-
lation threshold.
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