
Generation of a sub-Poissonian state with quantum high- and low-pass filters

Hai-bo Wang,* Yongmin Li,† Satoru Odate, and Takayoshi Kobayashi
Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation (JST),

Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
�Received 8 March 2005; published 27 July 2005�

We introduce a quantum component, the quantum high- and low-pass filter, and analyze its output charac-
teristic. It is shown that a quantum bandpass filter can be achieved by using passive linear optics and projection
measurements. Furthermore, we show that the sub-Poissonian state can be generated by using a cascaded
quantum low-pass filter and high-pass filter.
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Since Hollenhorst and Caves �1� introduced the concept
of a squeezed state, it has been widely used in quantum
optics and in many other branches of quantum physics, from
solid-state physics to cosmology �2�. Recently, quantum en-
tanglement, which can be generated from squeezed states �3�,
has played an essential role in quantum information and
communication. Many different schemes of generating
squeezed states were proposed and experimentally realized,
such as optical parametric amplification �4�, resonance fluo-
rescence �5�, harmonic generation �6�, etc. The squeezed
state had also been applied to experimental demonstration of
high-sensitivity measurements �7�, quantum nondemolition
�QND� measurements �8�, construction of quantum networks
�9�, etc. until now, all of the proposed or realized squeezed
states were built on nonlinear physics processes �10�.

Recently, significant progress has been achieved by pro-
posals for quantum gates using only passive linear optics and
projection measurements �11–13�. These proposals show
that strong nonlinear effects can be implemented by exploit-
ing post-selection strategies based on single-photon tech-
nologies �14�. For example, the nonlinear �-phase shift
and controlled-NOT quantum gate have been experimentally
demonstrated by using linear optics components �15,16�.
In a similar way, entanglement concentration and entangle-
ment purification can be achieved by using conditional
measurements �17�.

To date, the nonlinear effect caused by linear optics and
projection measurement has been limited in the discrete vari-
able of quantum optics and quantum information, so that it
may be interesting to extend this technique to the
continuous-variable regime. In this paper, we introduce a
quantum component, the quantum high- and low-pass filter
(quantum HPF and LPF), which consists of linear optics
components. We analyze the output characteristic of the
quantum filter and show that it is possible to generate a
squeezed state by assembling linear optics components.

Figure 1 shows the optical circuit of a quantum filter. A
similar setup has been used to demonstrate the QND mea-
surement of the Fock states �18,19�. We analyze the circuit

for an arbitrary input state and show how it can work as a
quantum filter. Beam splitters A, B, and C shown in Fig. 1
are assumed to be asymmetric in phase. The reflection off the
“dashed” surface of each beam splitter produces a sign
change. The operator input-output relations between the two
input modes �ain ,bin� and the corresponding output modes
�aout ,bout� have the general form aout=��iain+�1−�ibin and
bout=�1−�iain−��ibin, where �i and 1−�i are the intensity
reflectivity and transmittivity. i=a, b, and c correspond to
beam splitters A, B, and C, respectively. The crucial compo-
nent in this interferometer is beam splitter C, which is used
to achieve the nonlinear �-phase-shift operation �15,20�. In
this paper, we consider only cases where one of the detectors
Db2 and Dc2 counts one photon and only one photon
�OPOOP� and another detector counts no photons. Provided
the photons are indistinguishable, the occurrence of condi-
tional interference depends on the input photon number. The
phase of photon state in beam t depends on the incident
photon number n and the reflectivity �c �15�. For n��c / �1
−�c�, no phase shift occurs, and for n��c / �1−�c�, it picks
up a �-phase shift.

The application of the filter to a Fock state provides a
definite output. Let the Fock state �nw� impinge on the input
ports a1. A single-photon state �1� is injected into the ancilla
mode b1 and the other ancilla mode c1 is unoccupied. The
reflectivities of each beam splitters are set by

�a = 1/�nw + 1��1 − �c�, �b = �c/nw�1 − �c� ,
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FIG. 1. Optical circuit of a quantum filter. Beam splitters A, B,
and C are assumed to be asymmetric in phase. Reflection off the
“dashed” surface of each beam splitter produces a sign change. Db2

and Dc2 are single-photon detectors. The quantum filter is realized
when the detectors Db2 and Dc2 count one photon and only one
photon and another detector counts no photon. b1 and c1 are ancilla
modes.
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0 � �c � nw/�nw + 1� . �1�

The conditional interference of the filter can be maximized
by setting �a and �b to satisfy Eq. �1�. So that, if nw photons
exist in path a1, a �-phase shift occurs for state in path t and
one photon will appear at port c2. On the contrary, if no
photons are in path a1, no phase shift occurs in path t and the
single photon appears at output port of b2. These operations
succeed with 100% probability. For convenience, the point
nw is called the working point. Therefore, the QND of the nw
state will be achieved when one photon appears at output
port c2 �18�.

When photons with a different number from nw are in-
jected into this scheme, the output is not so clear and QND
cannot be achieved. Next, we consider the output character-
istic of this scheme for a generalized input state and show
that this scheme may be treated as a quantum HPF or LPF.
The input state at the port a1 may be expanded in terms of
the number states as ���a1=�Cn�n�a1. The input state for the
quantum filter is given by ��in�=�n=0

� Cn�n�a1�1�b1�0�c1. The
reflectivities of each beam splitter are set as Eq. �1�. After
passing through the setup, the output state becomes

�
n=0

�

��c
n−1Cn	���c�1 − �a��1 − �b� − �n − n�c − �c���a�b�

��n�a2�1�b2�0�c2 + ���c�1 − �a��b + �n − n�c − �c�

���a�1 − �b���n�a2�0�b2�1�c2
 . �2�

One may use the technique of conditional-state preparation
�21�, in which the state is extracted by a triggering signal. In
our case, the triggering signal is one of the detectors Db2 and
Dc2 counts OPOOP while another detector counts no pho-
tons. Depending on the triggering signal, the filter will work
as a quantum HPF or LPF. For example, when the detector
Dc2 counts OPOOP and the detector Db2 counts no photons,
the output state is reduced to the second part of Eq. �2�,

��out�HPF = �
n=0

�

��c
n−1Cn	���c�1 − �a��b + �n − n�c − �c�

���a�1 − �b���n�a2�0�b2�1�c2
 , �3�

and the first part of Eq. �2� is discarded by post-selection.
Line 1 in Fig. 2�a� shows how the normalized output prob-
ability of the filter varies with photon number. The param-
eters are set to nw=30 and �c=nw / �nw+1�−0.3. It can be
seen that curve 1 in Fig. 2�a� shows a typical response like a
classical HPF. In this way, a quantum HPF is realized in a
quantum domain. The output characteristic of the quantum
filter can be improved by using second-or higher-order quan-
tum HPF. The simplest way to make a second-order filter is
just to cascade two quantum filters—that is, to connect one
after the other, so the input state must go through the first one
and then the second. Line 3 in Fig. 2�a� shows the response
for third-order quantum HPF. It can be seen that the slope of
line 3 are steeper than the first-order one. Therefore, a quan-
tum HPF can be achieved by only linear optics and
conditional-state preparation. When the detector Db2 counts
OPOOP and the detector Dc2 counts no photons, the filter is

worked as a quantum LPF and the response graphs are
shown in Fig. 2�b�. The third-order quantum LPF is also
shown in Fig. 2�b�.

The clearest physical description of the quantum filter
properties is that of a QND measurement for the n-photon
state. At the working point of n=nw, the quantum filter can
be perfectly demonstrated. The imperfect QND measurement
provides the response function of a quantum HPF or LPF. It
should be pointed out that the quantum filter, shown in our
paper, is different from a classical filter. The response of the
classical filter has a definite value for each input physical
quantity. However, the curves shown in Fig. 2 compose a
probability distribution function for each input photon num-
ber, which gives the conditional probability that the photons
appear at the output port a2 of the filter while the triggering
signal happens. This filter can thus be used to generate a
sub-Poissonian state which is generally generated from non-
linear process before.

Consider the schematic setup for generation of the sub-
Poissonian state illustrated in Fig. 3. The input state ��in�
= �	� for the setup is a coherent state, which can be written as
a superposition of Fock states in the form

FIG. 2. The response of quantum HPF and LPF. �a� The typical
response of a quantum HPF when the detector Dc2 counts OPOOP
and detector Db2 counts no photons. Lines 1 and 3 correspond to
first- and third-order HPF. �b� The response of a quantum LPF when
the detector Db2 counts OPOOP and detector Dc2 counts no pho-
tons. Lines 1 and 3 correspond to first- and third-order LPF. The
parameters are set to be nw=30, �c=nw / �nw+1�−0.3.
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�	� = e−�	�2/2�
m=0

�
	m

�m!
�m� . �4�

The coherent state passes through a quantum LPF first and
then a quantum HPF. The quantum LPF and HPF may have
different working points n1 and n2. The sub-Poissonian-state
preparation is successful when the operations of both quan-
tum filters work properly. The output state can then be
derived as

��out� = e−�	�2/2�
m=0

�
	m

�m!
��c1

m−1��c2
m−1

����c1�1 − �a1��1 − �b1�

− �m − m�c1 − �c1���a1�b1�

����c2�1 − �a2��b2

+ �m − m�c2 − �c2���a2�1 − �b2���m� . �5�

Figure 4 shows an example that generates a sub-Poissonian
state for a specific case of this scheme. The input light is a
coherent state with �	�=�2. The solid line in Fig. 4 gives the
probability distribution of the state ��out� after the filter pair.
The Poissonian distribution P�m� of a coherent state is also
shown in Fig. 4 �dashed line�. For convenience, the probabil-
ity distribution of the sub-Poissonian state has been magni-
fied to the same level as the coherent state. It can be seen that
the width of photon-number distribution of ��out� is much

narrower than that of the coherent state. The parameters are
set to be n1=20, n2=10, �c1=n1 / �n1+1�−0.4, and �c2
=n2 / �n2+1�−0.4. The efficiency of successful sub-Pois-
sonian-state preparation in our scheme can be defined as the
ratio between the post-selected photons and the injected co-
herent photons. The probability of the sub-Poissonian state
shown in Fig. 4 can be calculated to be 1.3%, which is a
receivable level. More squeezing of the photon-number dis-
tribution with reduced successful probability can be realized
by using higher-order LPF and HPF.

It should be noted that the quantum filter, as depicted in
our paper, is a nondeterministic quantum element, the opera-
tion of which is conditioned on the detection of an auxiliary
photon. The generation of the sub-Poissonian state can be
seen as a collapse of the entanglement among photons at the
output ports of a2, b2, and c2. However, the state preparation
is made by post-selection of the relevant events in the record
of the measurements on the two detectors, which can be
made after the end of the physical measurement. In fact, due
to the fact that only one photon exists at the output ports of
b2 or c2, all n-photon components which happen to appear at
the output port a2 will contribute to the non-post-selected
output state, so that no wave-function collapse actually oc-
curs from the non-post-selected output state to the sub-
Poissonian state.

In our proposal, the single-photon detector is idealized
which can distinguish one photon from a vacuum and mul-
tiphotons. Further developments are expected for detectors
with such a capability. Takeuchi et al. �14� described a
single-photon resolution detector that can distinguish be-
tween one and two photons very well, but the quantum effi-
ciency of this detector is presently limited to 88%. This
means that there is a chance of mistakenly identifying a two-
photon state as a single-photon state. Also, the dark count
rate of photodetectors will strongly affect the quality of the
sub-Poissonian state. At present, the major technological
challenge is to improve the quantum efficiency of detectors
to distinguish single-photon events from two-photon and
zero-photon events.

In conclusion, we first introduced and analyzed the output
characteristic of quantum high- and low-pass filters which
consist of only passive linear optics. It was shown that a
sub-Poissonian state can be generated from a coherent state
by using a bandpass filter which consists of quantum LPF
and HPF. The generated sub-Poissonian state in a free-
propagating optical mode can then be used for other pur-
poses. The difference between our scheme and those pro-
posed before was that the measurement-caused nonlinear
effect, instead of the traditional nonlinear process, is used to
alter the photon distribution of a coherent light. Closer to our
proposal, Sanaka �18� suggested a scheme to generate
photon-number Fock states by a chain of beam splitters and
quantum nondemolition measurements. However, the pro-
posed scheme is relative inefficient due to many beam split-
ters and post-selection by many single-photon detectors. In
our scheme, it is enough to generate a sub-Poissonian state
by just two quantum filters. The complicated multiphoton
interference has been removed so that the efficiency of state
preparation has been much improved.

FIG. 3. Schematic for the generation of sub-Poissonian state.
The coherent state passes through a quantum LPF firstly and then a
quantum HPF. The quantum LPF and HPF may have different
working points n1 and n2.

FIG. 4. The distribution function P�m� of the generated sub-
Poissonian state for a specific case of this scheme. The solid line
gives the probability distribution of the state ��out� after the filter
pair. The dashed line shows the Poissonian distribution of a coher-
ent state with �	�=�2. The parameters are set to be n1=20, n2=10,
�c1=n1 / �n1+1�−0.4, and �c2=n2 / �n2+1�−0.4.
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