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The quantum characteristics of sum-frequency process in an optical cavity with an input signal optical beam,
which is a half of entangled optical beams, are analyzed. The calculated results show that the quantum
properties of the signal beam can be maintained after its frequency is conversed during the intracavity nonlin-
ear optical interaction. The frequency-conversed output signal beam is still in an entangled state with the
retained other half of the initial entangled beams. The resultant quantum correlation spectra and the parametric
dependences of the correlations on the initial squeezing factor, the optical losses and the pump power of the
sum-frequency cavity are calculated. The proposed system for the frequency conversion of the entangled state
can be used in quantum communication network and the calculated results can provide direct references for the
design of experimental systems.
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I. INTRODUCTION

Quantum entanglement of amplitude and phase quadra-
tures of optical fields, a typical continuous variable �CV�
entanglement, has been extensively applied in the quantum
information and communication �1�. The unconditionalness
of CV entanglement, which is usually generated from the
nonlinear optical interaction of a laser with a crystal in a
determinant fashion for a given experimental system, is a
valuable feature for efficiently exploiting the entanglement
resource. The successful experiments of unconditional quan-
tum teleportation, quantum dense coding, quantum entangle-
ment swapping, and elementary quantum communication
networks based on CV entanglement �2–8� enhance the in-
terest to explore the schemes establishing a more compli-
cated CV quantum communication network and developing
CV quantum telecommunication. Recently, a direct quantum
interface for photonic qubits at different wavelengths was
experimentally demonstrated �9�. In their experiment, the
energy-time entanglement of a photon at 1310 nm wave-
length with a photon at 1550 nm, was coherently transferred
to another photon at a wavelength of 710 nm via a process of
sum-frequency generation �SFG�. Since 710 nm wavelength
is close to that of alkaline atomic transitions, the conversed
photon can be considered to be used for the storage and
processing of quantum information. It is important to pre-
serve the initial entanglement after the wavelength of the
light is conversed for building a complete quantum informa-
tion network of CV using the entangled state of light. In
1990, Kumar proposed a scheme for quantum frequency con-
version �QFC� and then experimentally proved that the non-
classical intensity correlation can be preserved after the fre-
quency of one of the initial twin beams was conversed
�10,11�. In Refs. �10,11�, a mode-locked, Q-switched, and
frequency-doubled Nd-doped yttrium-aluminum-garnet
�Nd:YAG� laser was used as the pump laser for both twin-

beam generation and the QFC in a nonlinear crystal.
On the other hand, the stable entangled state of amplitude

and phase quadratures of continuous optical fields have been
produced through the optical parametric amplification �OPA�
processes of a continuous wave �CW� in an optical cavity
and applied in a variety of CV quantum information �1–8�.
Especially, CW nondegenerate OPA �NOPA� using type II
nonlinear ��2� crystal can directly provide either the bright
entangled optical beams with the correlated amplitude
quadratures and the anticorrelated phase quadratures when it
operates at amplification �12� or that with the anticorrelated
amplitude and the correlated phase at deamplification �6–8�.
In this paper, we will discuss the QFC of a CW, which is a
half of the Eistain-Podolsky-Rosen �EPR� entangled optical
beams produced from a CW NOPA. The optical process used
for the QFC is an intracavity SFG. Our calculation shows
that the quantum entanglement characteristics of the initial
entangled beams can be preserved after the frequency of one
of the entangled beams is conversed. The parameter depen-
dences of the preserved quantum entanglement upon the ini-
tial squeezing factor, the quality of optical cavity for SFG
and the pump power are calculated.

The paper is organized as follows. In the second section, a
physical system for the QFC is summarized. Then in the
third section, we recall the expressions of EPR entanglement
between the amplitude and phase quadratures of the en-
tangled optical beams. The process of SFG is described in
the fourth section and the entanglement characteristics be-
tween the frequency conversed beam and the retained initial
beam are discussed in the fifth section. Finally, we give a
brief conclusion in the sixth section.

II. PHYSICAL SYSTEM FOR QUANTUM FREQUENCY
CONVERSION

The schematic physical system for the QFC is shown in
Fig. 1. At first, a pair of EPR entangled optical beams with
degenerate frequency, a1��1� and a2��1�, are produced from
the NOPA via a frequency-down-conversion process of the*Email: changde@sxu.edu.cn
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pump field a0��0� at the frequency �0=2�1 �12�. The NOPA
is implemented in an optical cavity involving a type-II
phase-matching ��2� nonlinear crystal. The a01��1� and
a02��1� in the coherent state are the injected signals which
are polarized in same orientation with a1��1� and a2��1�,
respectively. We only consider the case of �a01 � = �a02� and
�a1 � = �a2� for simplicity. The balance requirement is usually
satisfied in experiments �6–8�.

The input-output Heisenberg evolutions of the field modes
of the NOPA operating in the state of amplification �the in-
jected subharmonic signals, a01��1� and a02��1�, and har-
monic pump field a0��0� are in phase� are given by �13�

Xa1 = X01 cosh r + X02 sinh r

Ya1 = Y01 cosh r − Y02 sinh r

Xa2 = X02 cosh r + X01 sinh r

Ya2 = Y02 cosh r − Y01 sinh r , �1�

where, Xa1, Xa2�Ya1 , Ya2� denote the amplitude quadrature
components �phase quadrature components� of the two out-
put modes and X01, X02 �Y01,Y02� are the corresponding
quadrature components of the two injected fields. r�0�r
� � � is the squeezing factor which depends on the length
and the effective second-order susceptibility of the nonlinear
crystal used for NOPA, the losses of the optical cavity, as
well as the intensity of pump field. From Eqs. �1�, we can
easily calculate the variances of the difference of amplitude
quadratures and the sum of phase quadratures between
a1��1� and a2��1�:

��2�Xa1 − GXa2�� = ��2�Ya1 + GYa2�� =
1

cosh�2r�
, �2�

where the variances have been normalized to the shot noise
limit �SNL� of the total beams a1��1� and a2��1�, G is the
optimum gain factor �13�.

Then, one of the EPR beams �a1� is injected in another
optical cavity involving a nonlinear ��2� crystal �SFG�.
b1

in��1�=a1��1� and b2
in��2� are the injected signal and pump

field ��1��2� of the SFG, respectively. b1��1� and b2��2�
stand for the corresponding intracavity-fields of b1

in and b2
in.

An output field b3 at the frequency �3=�1+�2 is generated
via a nonlinear sum-frequency process in SFG cavity. We
will analyze the process of SFG and discuss the preserved
entanglement between the output field b3

out��3� of SFG and
the retained a2��1� in next sections.

III. SUM-FREQUENCY GENERATION

We calculate the quantum fluctuation characteristics of the
SFG in an optical cavity using the semiclassical approach.
The dynamics of small field fluctuations is described by lin-
earizing the classical equations of motion in the vicinity of
the stationary state. We consider that these field fluctuations
are driven by the fluctuations of the input fields �including
vacuum field� through the coupling mirrors. It has been theo-
retically demonstrated in Ref. �14� that the semiclassical ap-
proach can lead to the same results with the standard quan-
tum methods �15� for the quantum fluctuations of the output
fields from an optical cavity.

Under the case of perfect phase matching, zero detuning,
small one-pass gain, and small losses, the equations of mo-
tion for the classical amplitudes �1 ,�2 ,�3 of intracavity
fields associated with the annihilation operators b1 ,b2 ,b3 can
be expressed by �16�

��̇1�t� = − �	1 + 
1��1�t� + ��2
*�t��3�t� + �2	1�1

in�t�

+ �2
1c1
in�t�

��̇2�t� = − �	2 + 
2��2�t� + ��1
*�t��3�t� + �2	2�2

in�t�

+ �2
2c2
in�t�

��̇3�t� = − �	3 + 
3��3�t� − ��1�t��2�t� + �2	3�3
in�t�

+ �2
3c3
in�t� , �3�

where, the round-trip time � of light in the cavity is assumed
to be the same for all the three fields. The 	i and

i�i=1,2 ,3� stand for the single pass loss parameters corre-
sponding to the transmission of the input and output couplers
of the cavity and extra intracavity losses, respectively. The 	i
are directly related to the amplitude reflection and the trans-
mission coefficients of the input and the output couplers of
the optical cavity and the 
i to the amplitude transmission
coefficient of the optical medium in the cavity. In Eqs. �3�, 	i
and 
i express the losses during the single pass in the cavity,
and is not the losses in a unit time as usual, thus the round-
trip time � appears in the equations �16�. The �i

in�i=1,2 ,3�
are the classical amplitudes of bi

in �b3
in is vacuum field�. The

ci
in�i=1,2 ,3� denote the extra noise amplitudes in addition to

the intracavity field bi due to the internal loss mechanism. �
is the effective nonlinear coupling parameter, which is pro-
portional to the second order susceptibility of the medium.

Assuming that the pump field b2 is strong and can
be considered to be undepleted, we have �2=�2

*=E and
we can linearize the evolution equations around the mean
amplitudes:

�1�t� = ��1� + ��1�t� �1
in�t� = ��1

in� + ��1
in�t�

�3�t� = ��3� + ��3�t� �3
in�t� = ��3

in�t� . �4�

Substituting Eqs. �4� into Eqs. �3�, we obtain the fluctuation
dynamics equations,

FIG. 1. Scheme of physical system for QFC.
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���̇1�t� = − �	1 + 
1���1�t� + �E��3�t� + �2	1��1
in�t�

+ �2
1c1
in�t�

���̇3�t� = − �	3 + 
3���3�t� − �E��1�t� + �2	3��3
in�t�

+ �2
3c3
in�t� . �5�

After Fourier transformation, we have

�i�� + 	1 + 
1���1��� = �E��3��� + �2	1��1
in���

+ �2
1c1
in���

�i�� + 	3 + 
3���3��� = − �E��1��� + �2	3��3
in���

+ �2
3c3
in��� , �6�

where � is the analysis frequency.
Using the boundary condition on the output coupling mir-

ror �17�

��3
out = �2	3��3 − ��3

in, �7�

we obtain the fluctuation of output field b3
out in term of the

input fluctuation,

��3
out��� =

1

�i�� + 	3 + 
3��i�� + 	1 + 
1� + ��E�2

�	��i�� + 	1 + 
1��− i�� + 	3 − 
3�

− ��E�2���3
in���+2�	3
3�i�� + 	1 + 
1�c3

in���

− 2�E�	1	3��1
in��� − 2�E�
1	3c1

in���� . �8�

IV. ENTANGLEMENT CHARACTERISTICS

From Eq. �8� and the definitions of the amplitude and
phase quadratures, X= 1

2 �b+b+� and Y = 1
2i �b−b+�, the fluc-

tuation spectra of the quadrature components of b3
out are cal-

culated:

�Xb3
out =

1

R
�A�Xb1

in + B�Yb1
in + C�Xb3

in + D�Yb3
in + GXc3

in + HYc3
in

+ MXc1
in + NYc1

in �

�Yb3
out =

1

R
�A�Yb1

in − B�Xb1
in + C�Yb3

in − D�Xb3
in + GYc3

in − HXc3
in

+ M�Yc1
in − N�Xc1

in � , �9�

where

R = ��	1 + 
1��	3 + 
3� − ����2 + ��E�2�2

+ ����	1 + 
1 + 	3 + 
3��2

A = − 2�E�	1	3��	1 + 
1��	3 + 
3� − ����2 + ��E�2�

B = − 2�E�	1	3���	1 + 
1 + 	3 + 
3�

C = ��	1 + 
1��	3 − 
3� + ����2 − ��E�2���	1 + 
1��	3 + 
3�

− ����2 + ��E�2� + ����2�	1 + 
1+ 	3 + 
3��	3 − 
3− 	1

− 
1�

D = ����	1 + 
1��	3 − 
3� + ����2 − ��E�2��	1 + 
1 + 	3 + 
3�

− ����	1 + 
1��	3 + 
3� − ����2 + ��E�2��	3 − 
3 − 	1 − 
1�

G = 2�	3
3	��	1 + 
1��	3 + 
3� + ��E�2��	1 + 
1� + ����2�	3

+ 
3�


H = 2�	3
3������	1 + 
1�2 + ����2 − ��E�2�

M = − 2�E�
1	3��	1 + 
1��	3 + 
3� − ����2 + ��E�2�

N = − 2�E�
1	3�����	1 + 
1 + 	3 + 
3�

Xbi
in, Ybi

in�i=1,3� and Xci
in, Yci

in�i=1,3� denote the amplitude and
phase quadratures of b1

in, b3
in and c1

in, c3
in, respectively.

For observing the optimum entanglement between b3
out

and a2, we should implement the appropriate unitary trans-
formation on a2, in which the quantum properties of the op-
tical field a2 will not be changed. Generally, the amplitude
and phase quadratures of a2 are expressed by �18�

Xa2
� =

1

2
�a2e−i� + a2

+ei��, Ya2
� =

1

2i
�a2e−i� − a2

+ei�� , �10�

where, � is the phase angle of Xa2
� and Ya2

� rotated from the
initial Xa2 and Ya2, and it can be conveniently completed by
adjusting the phase of the local oscillator or using a phase-
shifter in experiments.

Rewriting Eq. �10� in terms of the amplitude and phase
quadratures Xa2 and Ya2 of a2, we obtain

Xa2
� = Xa2 cos � + Ya2 sin � �11�

and

Ya2
� = − Xa2 sin � + Ya2 cos � . �12�

The correlation fluctuations of amplitude and phase quadra-
tures between b3

out and a2
� �a2

� is the transformed a2 according
to Eqs. �10�� are expressed by:

�Xb3
out − g�Xa2

� =
1

R
�A�Xb1

in + B�Yb1
in + C�Xb3

in + D�Yb3
in + GXc3

in

+ HYc3
in + MXc1

in + NYc1
in � − g�Xa2 cos �

− g�Ya2 sin �

= �A

R
�Xb1

in − g cos ��Xa2� + �B

R
�Yb1

in

− g sin ��Ya2� +
1

R
�C�Xb3

in + D�Yb3
in + GXc3

in

+ HYc3
in + MXc1

in + NYc1
in � , �13�
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�Yb3
out + g�Ya2

� =
1

R
�A�Yb1

in − B�Xb1
in + C�Yb3

in − D�Xb3
in − HXc3

in

+ GYc3
in + M�Yc1

in − N�Xc1
in � − g�Xa2 sin �

+ g�Ya2 cos �

= �A

R
�Yb1

in + g cos ��Ya2� − �B

R
�Xa1

in

+ g sin ��Xa2� +
1

R
�− D�Xb3

in + C�Yb3
in

− HXc3
in + GYc3

in − NXc1
in + MYc1

in � , �14�

where, g is an adjustable gain factor. Since b1
in=a1 and the

quantum fluctuation is not changed in the unitary transforma-
tion, we may substitute Eqs. �1� into Eqs. �13� and �14�, and
get

�Xb3
out − g�Xa2

� = A

R
cosh r − g cos � sinh r�X01 + A

R
sinh r

− g cos � cosh r�X02 + B

R
cosh r

+ g sin � sinh r�Y01 − B

R
sinh r

+ g sin � cosh r�Y02 +
1

R
�C�Xb3

in + D�Yb3
in

+ GXc3
in + HYc3

in + MXc1
in + NYc1

in � , �15�

and

�Y3
out + g�Y2

� = A

R
cosh r − g cos � sinh r�Y01 − A

R
sinh r

− g cos � cosh r�Y02 − B

R
cosh r

+ g sin � sinh r�X01 − B

R
sinh r

+ g sin � cosh r�X02 +
1

R
�− D�Xb3

in + C�Yb3
in

− HXc3
in + GYc3

in − NXc1
in + MYc1

in � . �16�

Then, the correlation variance of the difference of amplitude
quadratures and the sum of phase quadratures are obtained

��2�Xb3
out − gXa2

� �� = ��2�Yb3
out + gYa2

� �� = A

R
cosh r − g cos � sinh r�2

+ A

R
sinh r − g cos � cosh r�2

+ B

R
cosh r + g sin � sinh r�2

+ B

R
sinh r + g sin � cosh r�2

+
1

R2 �C2 + D2 + G2 + H2 + M2 + N2� =
4��E�2	1	3

R

e2r + e−2r

2
−

A

R
g cos ��e2r − e−2r� + g2e2r + e−2r

2

+
B

R
g sin ��e2r − e−2r� +

1

R2 �C2 + D2 + G2 + H2 + M2 + N2� . �17�

Taking

A
�R

= 2��E��	1	3cos  ,

and B
�R

=2��E��	1	3sin , we have

��2�Xb3
out − gXa2

� �� = ��2�Yb3
out + gYa2

� ��

=
4��E�2	1	3

R

e2r + e−2r

2

− �2�E�	1	3�
1

�R
g cos� + ���e2r − e−2r�

+ g2e2r + e−2r

2
+

1

R2 �C2 + D2 + G2 + H2

+ M2 + N2� . �18�

Calculating the minimum value of Eq. �18� in term of g, we
obtain the optimum gain:

gopt =
2��E��	1	3

�R
cos� + ��

e2r − e−2r

e2r + e−2r ,

and the corresponding correlation variance equals to

S = ��2�Xb3
out − goptXa2

� ��min = ��2�Yb3
out + goptYa2

� ��min

=
2��E�2	1	3

R
e2r + e−2r − cos2�� + �

�e2r − e−2r�2

e2r + e−2r �
+

1

R2 �C2 + D2 + G2 + H2 + M2 + N2� , �19�

when �=−, S reaches the minimum value Smin.
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Figure 2 shows the minimum correlation fluctuation
spectra Smin versus the normalized analysis frequency
��=�� /	1� for different initial squeezing factor r. Obvi-
ously, at zero frequency ��=0�, the maximum correlation is
obtained �Smin��=0� reaches the minimum�, and the larger
the initial squeezing factor r is, the better the preserved cor-
relation between a2 and b3

out is.
In Figs. 3 and 4, the dependences of Smin on the pump

parameters ��E /	1� are calculated for different relative
transmissions of 	3 /	1 and different squeezing factors r, re-
spectively. For the smaller pump parameters, the smaller
	3 /	1 is better �Smin is smaller�, but for larger pump param-
eters the larger 	3 /	1 value corresponds to smaller Smin. For
a given 	3 /	1, we have an optimal pump parameter at which

the Smin reaches to a minimum. If 	3 /	1 increases, the opti-
mal pump parameter increases too. That is because for larger
output transmission 	3 of b3

out, the higher pump power is
needed to achieve the optimal SFG. Figure 4 shows, when
the parameters of SFG cavity and initial squeezing are given,
we should choose the optimal pump power to meet the
smallest Smin value for successfully preserving the quantum
correlation. In the ideal limit without any intracavity losses,
if taking gopt=1, the Smin will equal to the initial EPR
correlation between a1 and a2. In this case �=�, it
means that there is a phase difference of � between the input
�Xa1=Xb1

in � and the output �Xb3
out� of SFG �19�, thus when we

measure the correlation between Xb3
out and Xa2, a phase shift

of � should be added on Xa2.
In Fig. 5, the relation of the minimum correlation fluctua-

tions Smin versus the initial squeezing factor r is drawn. The
correlation variance Smin between the field a2 and b3

out de-
crease, i.e., the entanglement increases when the r increases.
From Eq. �2� we know that the initial correlation variances of
both amplitude and phase quadratures between a1 and a2 are
smaller than the normalized SNL for r�0, thus the insepa-
rability criterion of EPR entanglement state for continuous
variables proposed by Duan �20� is satisfied, that is

��2�Xa1 − GXa2�� + ��2�Ya1 + GYa2�� � 2. �20�

In the case of r�0, the minimum correlation variances for
the amplitude and phase quadratures between a2 and b3

out

fields are equal �see Eq. �19�� and both smaller than 1 also
�Fig. 5�, so we have

��2�Xb3
out − goptXa2

� ��min + ��2�Yb3
out + goptYa2

� ��min � 2.

It means, the correlation variables of the quadratures be-
tween the field a2 and b3

out satisfy the inseparability criterion
for quantum entangled state. Once the initial entanglement
between the field a1 and a2 exists �r�0�, the entanglement
between the field a2 and b3

out also exists. The better the initial

FIG. 2. The correlation fluctuation spectra Smin vs the normal-
ized analysis frequency ���=�� /	1�. Transmission of the output
coupler 	3 /	1=1, extra intracavity losses 
1 /	1=
3 /	1=0.1. Pump
parameter �E /	1=1, gain factor g is chosen to be the optimum
value.

FIG. 3. The correlation fluctuation spectra Smin at �=0 vs
the pump parameter �E /	1 for different relative transmission
	3 /	1=0.6,1 ,1.4, extra intracavity losses 
1 /	1=
3 /	1=0.1, gain
factor g is chosen to be the optimum value, the squeezing parameter
r=2.

FIG. 4. The correlation fluctuation spectra Smin at �=0 vs
the pump parameter �E /	1 for different squeezing factor
�r=0.6,1 ,2�. The normalized frequency �=0, extra intracavity
losses 
1 /	1=
3 /	1=0.1, gain factor g is chosen to be the optimum
value. Transmission of input-output couple 	3 /	1=1.
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entanglement is, the larger the remaining entanglement after
the frequency conversion is. For an ideal SFG without the
intracavity losses and taking �=0 and ��E�2=	1	3, the re-
maining correlation variances will equal to the initial vari-
ances from Eq. �19�, thus the entanglement can be perfectly
preserved. However, for any experimental system with the

losses, the remaining entanglement is always worse than that
of the initial state.

V. CONCLUSION

Our analyses theoretically proved that the initial EPR en-
tanglement between the amplitude and phase quadratures of
entangled beams can be preserved after the frequency of one
of the beams is conversed via an intracavity nonlinear inter-
action of SFG. We calculated the dependences of the result-
ant correlation fluctuation spectra on the parameters of SFG
system, the pump power and the initial squeezing. The
squeezing parameter r=0.6 corresponds to the correlation
fluctuation of the initial EPR beams is �5.2 dB below the
SNL, which has been realized by experiments �6–8�, in this
case the preserved entanglement is about 2 dB below the
SNL�Smin�0.63� in the experimentally accessible systems.
The frequency conversion of entangled optical beams is im-
portant in constructing complete quantum communication
networks. The calculated results may be a useful reference
for the design of quantum communication systems.
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