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We propose an asymmetric quantum cloning scheme. Based on the proposal and experiment by Andersen
et al. �Phys. Rev. Lett. 94, 240503 �2005��, we generalize it to two asymmetric cases: quantum cloning with
asymmetry between output clones and between quadrature variables. These optical implementations also em-
ploy linear elements and homodyne detection only. Finally, we also compare the utility of symmetric and
asymmetric cloning in an analysis of a squeezed-state quantum key distribution protocol and find that the
asymmetric one is more advantageous.
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I. INTRODUCTION

A quantum cloning machine was first considered by
Buzek and Hillery for qubits �1�, and later was extended to
the continuous-variable �CV� regime by Cerf et al. �2�. CV
quantum cloning has been examined extensively in the past
ten years because of its relative ease in preparing and ma-
nipulating quantum states.

Quantum cloning plays a crucial role in quantum commu-
nication and quantum computation. It has been shown that
quantum cloning might improve the performance of some
computational tasks �3� and is believed to be the optimal
eavesdropping attack for a certain class of quantum crypto-
graphy with coherent states and homodyne detection �4�. It
also opens an avenue for further understanding of quantum
mechanics and measurement theory. In particular, an asym-
metric cloning machine, including asymmetries between the
output clones and between the quadrature variables, can be
used to assess the security of a CV quantum key distribution
�QKD� protocol �5–7�.

Possible experimental implementation of quantum clon-
ing of coherent states was first proposed by D’Ariano et al.
�8�, Braunstein et al. �9�, and Fiurasek �10�. In particular, the
scheme proposed by Fiurasek can be extended to asymmetric
quantum cloning, i.e., the output clones can have different
fidelities. However, all of these schemes utilized a nondegen-
erate optical parametric amplifier. Recently a much simpler
but efficient quantum cloning scheme was proposed and re-
alized by Andersen et al. �11�. With linear optics, such as a
beam splitter, modulator, and homodyne detection, they ex-
perimentally obtained high-fidelity 1-to-2 symmetric quan-
tum cloning for the first time. This graceful experiment can
be easily extended to various quantum cloning cases, such as
optimal N-to-M cloning, asymmetric cloning, and so on.

In this paper, with a measure-and-prepare strategy used in
CV quantum teleportation experiments �12� as well as Ref.
�11�, we generalize this scheme to two asymmetric cases and
discuss its application in analysis of QKD.

II. OPTIMALITY OF QUANTUM CLONING
TRANSFORMATION

Let us first review the conditions of the optimal cloning
transformation before introducing the extended cloning
transformation. Here we suppose the quantum state to be
cloned is a coherent state, which can be characterized by two

canonical conjugate variables, e.g., amplitude X̂ and phase Ŷ,
with Gaussian statistics. It then can be described by its anni-

hilation operator âin= �X̂in+ iŶin� /2, with variances of VXin
= ��2Xin� and VYin

= ��2Yin�. The cloning process inevitably
induces noise compared with the input state. Thus output
clones are mixed states with quadrature components Xclone

j

and Yclone
j �j=1,2�, which can be characterized by a density

operator �̂out
i . The quality of the cloned quantum state can be

quantified by its fidelity Fi= ��in � �̂out
i ��in� �12�, where ��in�

is the input state. For unity gain �equal mean values between
input and output�, the fidelity can be written as

Fi =
2

��2 + NXi
��2 + NYi

�
, �1�

where NXi
and NYi

represent the additional noise of the ith
clone induced by the cloning process. For unity gain, it is
defined as NXi�Yi�

=VXi�Yi�
−VXin�Yin�. For 1-to-2 quantum clon-

ing, the cloning-induced noise satisfies the relations �13�

NX1
NY2

� 1 and NX2
NY1

� 1, �2�

where the variance of the vacuum is normalized to 1. The
lower bounds correspond to optimal cloning. This is just the
noise required to forbid inferring the values of Xin and Yin
with a precision better than the Heisenberg limit by measur-
ing Xclone

1 and Yclone
2 . For the symmetric case, we have

NX1�Y1�=NX2�Y2�=1, and the fidelity of each clone is 2/3.
In fact, the optimality of the quantum cloning transforma-

tion has been discussed in an intuitive way by Braunstein
et al. �9�. They give three expected properties of the sym-
metric N-to-M �N�M� optimal cloning transformation in
the Heisenberg picture. Here we adopt these three require-
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ments for our 1-to-2 asymmetric cases. The first is that the
output state should have the same mean values as the input
state, that is to say,

�Xclone
i � = �Xin� and �Yclone

i � = �Yin� , �3�

where i=1,2 , . . ., which represent the output clones. The sec-
ond requirement is covariance with respect to rotation in
phase space. For a coherent state, its quadrature component
Xin

� =ainei�+ain
† e−i� has a variance independent of the phase

angle �, i.e., V�Xin
� �=1 for any value of �. Taking optimality

into account, the variance of the quadrature component of
the output clones should have a rotational covariance

V�Xclone
� � = 1 +

2

N
−

2

M
. �4�

For symmetric 1-to-2 cloning, the variance of the optimal
output clone is 2. That is to say, one additional noise is
induced through the cloning process. It is coincident with the
Heisenberg limit of inequalities �2�. This requirement is only
suitable for symmetric cases. For asymmetric cases, here we
require the output clones to reach the Heisenberg limit
�7,10�, i.e., the cloning transformation should achieve the
lower bounds 1 of inequalities �2�. The third requirement is
unitarity of the cloning transformation. In the Heisenberg
picture, it is equivalent to demanding that commutation rela-
tions are preserved through evolution:

�Xclone
j ,Xclone

k � = �Yclone
j ,Yclone

k � = 0,

�Xclone
j ,Yclone

k � = 2i� jk, �5�

for j ,k=1,2 , . . .. These three requirements will be used to
determine the optimal cloning transformation below.

III. CLONING WITH ASYMMETRY BETWEEN
OUTPUT CLONES

The schematic setup of 1-to-2 quantum cloning with
asymmetry between output clones is shown in Fig. 1. The
input coherent state âin is split into two parts by a polariza-
tion beam splitter PBS1 with power transmission of T, 0
�T�1. The reflected part is detected with an optimal mea-
surement strategy which includes a 50% beam splitter �BS2�
and two detectors, and the transmitted part is further split

into two parts by a beam splitter BS3 with transmission of
these are then modulated by the foregoing measurement re-
sult. In contrast to the proposal of �11�, we use two transmis-
sion variable beam splitters �BS1 and BS3� and transfer the
modulations behind BS3 to introduce different gains. The
gains of phase and amplitude modulation to clone 1 and
clone 2 can be adjusted independently. In the Heisenberg
picture, clone 1 can be written as

âclone
1 = ���1 − t�T + g1

��1 − T�/2�âin + �g1
�T/2

− ��1 − t��1 − T���̂1
�0� +

g1

�2
�̂2

�0� + �t�̂3
�0�, �6�

where �̂1
�0�, �̂2

�0�, and �̂3
�0� are the vacuums introduced by BS1,

BS2, and BS3, respectively. g1 is the scaling factor of modu-
lation to clone 1. Taking the mean values of clone 1 and the
input state to be equal by adjusting the coefficient of âin in
Eq. �6� to be 1, i.e., taking unity gain �the first requirement�,
the first clone becomes

âclone
1 = âin + 	� T

1 − T
�1 − ��1 − t�T� − ��1 − t��1 − T�
�̂1

�0�

+
1 − ��1 − t�T

�1 − T
�̂2

�0�+ + �t�̂3
�0�, �7�

and similarly the second cloned quantum state becomes

âclone
2 = âin + 	� T

1 − T
�1 − �tT� − �t�1 − T�
�̂1

�0�

+
1 − �tT
�1 − T

�̂2
�0�+ − �1 − t�̂3

�0�, �8�

where the scaling factors of modulation are g1= �1
−��1− t�T� /��1−T� /2 and g2= �1−�tT� /��1−T� /2. It is
easy and straightforward to check that transformations �7�
and �8� satisfy the third aforementioned requirement, which
assures the physical feasibility of the cloning transformation.
The second requirement is satisfaction of the Heisenberg
limit for the asymmetric cases. The equations NX1

NY2
=1 and

NX2
NY1

=1 can be reached by choosing the transmission of
BS1 and BS3 to satisfy T=1/ ��t+�1− t�2. The correspond-
ing scaling factors and additional noise are g1=�4 t / �1− t�,
g2=�4 �1− t� / t and NX1

=NY1
=�t / �1− t�, NX2

=NY2
=��1− t� / t.

Thus their fidelity reads F1=2/ �2+�t / �1− t�� and F2=2�2
+��1− t� / t�, respectively. Figure 2 gives the dependence of
fidelity on the power transmission of the second beam split-
ter. It shows that the fidelity of clone 1 increases and that of
clone 2 decreases when the transmission of BS3 varies from
0 to 1. The fidelity of both is 2/3 when t=0.5. This corre-
sponds to the symmetric case �11�. According to the defini-
tion by Cerf et al. �6�, the asymmetry of this cloning trans-
formation can be characterized by the parameter 	
=�t / �1− t�. The further the parameter 	 departs from 1, the
more asymmetric the output clones are. This parameter to-
gether with the subsequent parameter 
 will be used to assess
the QKD protocol.

FIG. 1. Schematic setup of quantum cloning with asymmetry
between output clones.
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IV. CLONING WITH ASYMMETRY BETWEEN
QUADRATURE VARIABLES

In the proposal of Ref. �11�, two vacuums are introduced
inevitably to the output clones through BS2 and BS3, respec-
tively. Here we seed a squeezed state to the vacuum input
port, so that the output clones are squeezedlike. One quadra-
ture is cloned better than the other, and the generalized
Heisenberg inequalities �2� are still satisfied. A sketch of the
setup is shown in Fig. 3. The transmission of both BS1 and
BS3 is fixed to 50% in this case. Suppose both of the
squeezed states are minimum uncertainty states, have equal
squeezing strength, and have the same squeezing direction
�e.g., both of them are amplitude-squeezed states�. Their an-
nihilation operators are

�̂2
S = �X̂�2

�0�e−r + iŶ�2
�0�e+r�/2,

�̂3
S = �X̂�3

�0�e−r + iŶ�3
�0�e+r�/2, �9�

respectively, where r is the squeezing parameter. The cloning
transformation is

aclone
1 = ain +

1
�2

�X̂�2
�0�e−r + X̂�3

�0�e−r + iŶ�3
�0�e+r − iŶ�2

�0�e+r� ,

aclone
2 = ain +

1
�2

�X̂�2
�0�e−r − X̂�3

�0�e−r − iŶ�3
�0�e+r − iŶ�2

�0�e+r� .

�10�

It is obvious that the cloning-induced quadrature noise of the
output state is

NX1 = e−2r, NX2 = e−2r,

NY1 = e+2r, NY2 = e+2r. �11�

This cloning transformation can also reach the Heisenberg
limit NX1NY2=1 and NX2NY1=1; hence it is an optimal clon-
ing scheme. The fidelity of both of the output clones is
2 /��2+e−2r��2+e+2r�. The dependence of fidelity on the
squeezing parameter is shown in Fig. 4. Obviously the fidel-
ity decreases as the squeezing strength increases. The fidelity
equals 2/3 when r=0; this corresponds to the symmetric
cloning case �11�. But from Eq. �11� it is shown that the
cloning-induced noise of the quadrature amplitude and
quadrature phase decreases and increases, respectively, as the
squeezing parameter r increases. The asymmetry between
the output clones can be characterized by the parameter 

=e−2r, as defined in Ref. �7�. In the view of the quantum
nondemolition �QND� measurement process, this also is a
unity-gain QND scheme for quadrature amplitude of the in-
put state. Interestingly, when the seeded squeezed states are
substituted by continuous-variable entanglement states, par-
tially disembodied transport of the quantum state can be re-
alized �14�.

It should be noted that the two above-mentioned schemes
can be united to one, that is to say, a cloning process with
asymmetry both between clones and between quadrature
variables is possible. In the base of the first asymmetric case,
by seeding squeezed state, we can obtain two squeezedlike
clones, where one is noisier than the other in both quadrature
variables. The schematic setup is shown in Fig. 5. By substi-
tuting �̂1

�0�, �̂2
�0�+, and �̂3

�0� with the squeezed operators �̂1
S, �̂2

S+,

FIG. 2. Plot of fidelities of cloning with asymmetry between
output clones.

FIG. 3. Schematic setup of quantum cloning with asymmetry
between quandrature variables.

FIG. 4. Plot of fidelities of cloning with asymmetry between
output clones.
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and �̂3
S, where �̂1

S= �X�1
�0�e−r+ iŶ�1

�0�e+r� /2 and �̂2
S† , �̂3

S are given
by Eq. �9�, it is easy to obtain its input-output relations

âclone
1 = âin + 	� T

1 − T
�1 − ��1 − t�T� − ��1 − t��1 − T�
�̂1

S

+
1 − ��1 − t�T

�1 − T
�̂2

S+ + �t�̂3
S,

âclone
2 = âin + 	� T

1 − T
�1 − �tT� − �t�1 − T�
�̂1

S

+
1 − �tT
�1 − T

�̂2
S+ − �1 − t�̂3

S. �12�

The transformations �12� also satisfy the first and third afore-
mentioned requirements as do Eqs. �7� and �8�. The second
requirement is to reach the Heisenberg limit for our asym-
metric case. Assuming there is no correlation between input
state and seeded squeezed states, it is easy to check that

NX1
= e−2r�t/�1 − t� = 	
, NY1

= e2r�t/�1 − t� = 	
−1,

NX2
= e−2r��1 − t�/t = 	−1
, NY2

= e2r��1 − t�/t = 	−1
−1

�13�

when choosing the transmissions T and t of BS1 and BS3 to
satisfy the equation T=1/ ��t+�1− t�2, and thus have the
equations NX1

NY2
=1 and NX2

NY1
=1. Their fidelities read

F1 =
2

��2 + e−2r�t/�1 − t���2 + e2r�t/�1 − t��
,

F2 =
2

��2 + e−2r��1 − t�/t��2 + e2r��1 − t�/t�
, �14�

respectively.
As the optimal individual eavesdropping strategy, this

combined quantum cloning machine can be used to analyze
the security of quantum key distribution. A detailed discus-
sion of the application of asymmetric quantum cloning in the
squeezed-state QKD protocol has been presented by Cerf
et al. �7�. In this paper, we compare the utility of symmetric
and asymmetric cloning in analysis of this protocol. In the

original proposal �7�, the Gaussian key is encoded into a
displaced squeezed vacuum state. The squeezing and dis-
placement is applied at random on quadrature X or Y. When
imposing indistinguishability conditions, the total informa-
tion in this channel is

I =
1

2
log2�1 + �X�Y�

2 /�X�Y�
2 � = − log2 � , �15�

where �X�Y�
2 /�X�Y�

2 is the signal-to-noise ratio, and � is re-
lated to the squeezing degree of Alice’s sending system.
When Eve intervenes, the information rate Bob receives un-
avoidably degrades. Interestingly, the information Eve gains
on one quadrature is exactly the information that Bob lost on
the other quadrature, when she eavesdrops by quantum clon-
ing. The information rates of X Bob obtains and of Y Eve
obtains are given by Eqs. �7� and �8� in Ref. �7�, where the
subscripts 1 and 2 should be X and Y here. At the same time,
that of Bob’s quadrature Y and that of Eve’s quadrature X are

IY,B =
1

2
log2	 1 + �	
−1

�2 + �	
−1
 , �16�

FIG. 5. Schematic setup of combination of two asymmetric
quantum cloning machines.

FIG. 6. Plot of information rate as transmission of BS3 is varied.
r=0 �solid line�, 0.2 �dashed line�, and 0.6 �dotted line�.
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IX,E =
1

2
log2	 1 + �	−1


�2 + �	−1


 . �17�

Figure 6 gives the dependence of IX,B , IY,E �upper� and
IY,B , IX,E �lower� on transmission of BS3 with different
squeezing parameters r of Eve’s squeezed state in the cloning
machine. If Eve wants to tap quadrature X at some time, the
proper compromise between the obtained information rate
and the disturbance on Bob is an equal information rate be-
tween them �7,15� �crossing lower in the panel in Fig. 6�.
Here the disturbance on Bob is represented by the degrada-
tion of his information rate. The disturbance on Bob’s
quadrature Y induced by asymmetric attack is the same as in
the symmetric case �crossing of dotted line and solid line in
the lower panel of Fig. 6�, but that of quadrature X is sub-
stantially less than in the symmetric case at the same time
�upper panel in Fig. 6�. This can be explained in that the
disturbance on Bob’s quadrature X is transferred to Eve’s
quadrature Y by means of asymmetry of cloning. Therefore
asymmetric cloning is more advantageous than symmetric in
some situations.

V. CONCLUSION

In conclusion, we generalize the symmetric 1-to-2 quan-
tum cloning with linear optics to two kinds of asymmetric
cases. They can be combined to one, and provide a more
flexible quantum cloning machine. It is shown that asymmet-
ric cloning is the optimal choice for Eve when attacking the
squeezed-state QKD protocol. These proposals are useful for
future quantum communication systems and are easy to
implement with setups experimentally accessible at present.
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