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Abstract. A variety of optical quantum information networks based on
the multipartite entanglement of amplitude and phase quadratures of an
electromagnetic field have been proposed and experimentally realized in recent
years. The multipartite entanglement of optical continuous variables provides
flexible and reliable quantum resources for developing unconditional quantum
information networks. In this paper, we review the generation schemes of the
multipartite entangled states of optical continuous quantum variables and some
applications in the quantum communication networks with emphasis on the
experimental implementations.
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1. Introduction

Multipartite entanglement is one of the most fundamental and important quantum resources
for developing quantum communication networks. To characterize the entanglement of states
shared by many parties Coffman, Kundu and Wootters (CKW) discovered so-called ‘monogamy
inequalities’, constraining the maximal entanglement distributed among different internal
partitions of a multiparty system [1]. Then Adesso and Illuminati introduced a measure of
entanglement for continuous-variable (cv) systems to quantify the distributed entanglement
in multimode, multipartite Gaussian states and proved that the cv entanglement satisfies the
CKW monogamy inequality in all three-mode Gaussian states, and in all fully symmetric
N-mode Gaussian states, for arbitraryN [2]. A complete quantitative theory of multipartite
entanglement based on the monogamy of entanglement has been discussed in detail in [2, 3].
Originally, the quantum information was developed in discrete variable (dv) systems and
then was extended to the cv setting. In recent years, cv quantum information has attracted
extensive interest due to the high efficiency in the generation, manipulation and detection of
optical cv states [4]. The successful realization of unconditional quantum teleportation [5],
dense coding [6] and entanglement swapping [7] based on cv Einstein–Podolsky–Rosen (EPR)
entangled states of optical fields promoted investigations into the generation and application
of cv multipartite entangled states. van Loock and Braunstein [8] proposed a scheme to produce
cv multipartite entanglement using single-mode squeezed states and linear optics and designed
a quantum teleportation network for its application in 2000. The necessary conditions and
the experimental criteria to detect genuine multipartite cv entanglement were derived by van
Loock and Furusawa [9]. Successively, cv tripartite entangled states of optical fields were
experimentally obtained and applied in controlled dense coding quantum communication,
tripartite quantum state sharing (QSS) and a quantum teleportation network by three groups
in China, Japan and Australia, respectively [10]–[13]. The equivalence between entanglement
and the optimal fidelity of cv teleportation was theoretically proven [14]. It was shown in [14]
that a non-classical optimal fidelity ofN-user teleportation networks is necessary and sufficient
for N-party entangled Gaussian resources and thus allows for the definition of the entanglement
of teleportation, an operative estimator of multipartite entanglement in a cv system.

The aim of writing this paper is not to present a comprehensive review on cv
quantum entanglement and communication. We would like to emphasize the experimental
implementations of cv multipartite entanglement generation with quantum optical systems
and its applications in quantum communication networks. In this paper, we will introduce the
experimental schemes for generating cv multipartite entanglement of optical fields in section2
firstly, in which we concentrate on three-mode Gaussian states. Then two experimental systems
for two applications of tripartite cv entangled states in quantum communication networks will
be briefly described in sections3 and4, respectively. Finally, a short prospection is given in
section5.

2. Generation of multipartite cv entangled states

Quantum entanglement shared by more than two parties is named multipartite entanglement.
Very recently, an extended study on how to produce, detect and employ multipartite
entanglement for quantum communication with three-mode Gaussian states in an optical context
was analyzed in depth and a simple procedure to produce pure three-mode Gaussian states
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with arbitrary entanglement structure was introduced [15]. A mathematical framework for
the characterization of separability and entanglement of formation of general bipartite states
has been developed by Audenertet al [16]. In the quantum optical realm, we consider the
multipartite entangled states consisting of the multipart multi-mode with one mode per party,
and the amplitude and phase quadratures of electromagnetic modes are used for the continuous
quantum variables. The sufficient conditions for verifying unambiguously the presence of
genuine multipartite entanglement among optical modes were given in terms of the variances
of the amplitude and phase quadrature combinations in [9]. A set of inequalities containing
the conjugate variables of all modes provides reliable criteria for the verification of the
cv multipartite entanglement. The violations of the inequalities are sufficient for genuine
multipartite entanglement. Based on these inequalities, we can check the full inseparability
of an optical state by the experimentally measurable variances of the quadrature combinations.
For example, we consider the cv analogue [8, 17] of the Greenberger–Horne–Zeilinger (GHZ)
state [18] involving three entangled modes. In this case, the inequalities are written as
follows [9].

I.
〈
δ2(x̂1 − x̂2)

〉
+

〈
δ2(ŷ1 + ŷ2 + g3ŷ3)

〉
> 1,

II .
〈
δ2(x̂2 − x̂3)

〉
+

〈
δ2(g1ŷ1 + ŷ2 + ŷ3)

〉
> 1, (1)

III .
〈
δ2(x̂1 − x̂3)

〉
+

〈
δ2(ŷ1 + g2ŷ2 + ŷ3)

〉
> 1,

wherex̂i and ŷi (i = 1, 2, 3) stand for the amplitude and phase quadratures of the three modes,
respectively. Thegi are arbitrary real parameters named the gain parameters. The optimum gains
gopt

i are adjusted to minimize the left-hand sides of the inequalities in equations (1). It has been
proved in [9] that the violation of any two of the three inequalities in equations (1) is sufficient
for genuine tripartite three-mode entanglement.

van Loock and Braunstein [8] firstly proposed a scheme to produce multipartite
entanglement for cv of an optical field with the superposition of independently squeezed states
and theoretically proved that even one single-mode squeezed state is sufficient for yielding a
truly multipartite entangled state through the linearly optical transformation. Later, we designed
a system generating a cv tripartite entangled state with a bright two-mode squeezed state from
a non-degenerate optical parametric amplifier (NOPA) operating at deamplification [19]. The
two-mode squeezed state generated from the NOPA consists of a signal mode(x̂s, ŷs) and an
idler mode(x̂l, ŷl) with orthogonal polarizations and identical frequency. The amplitude and
phase quadratures of the signal and idler modes are anticorrelated and correlated respectively,
i.e. both variances of the sum of amplitude quadratures〈δ2(x̂s + x̂l)〉 and the difference of phase
quadratures〈δ2(ŷs − ŷl)〉 are smaller than the shot noise limit (SNL). The correlation variances
depend on the squeezing parameterγ of the two-mode squeezed state [20, 21]:〈

δ2(x̂s + x̂l)
〉
=

〈
δ2(ŷs − ŷl)

〉
= 2e−2γ . (2)

γ is a positive real function of the noise frequency(�) with a value between zero and infinity.
γ = 0, γ > 0 andγ → ∞ correspond to no quantum correlation, partial correlation and perfect
correlation, respectively. The schematic of the tripartite entangled state generation system from
a NOPA is shown in figure1 [10]. The two-mode squeezed state from NOPA is split by a
beam-splitter of the transmissionT1 = 2/3 and the reflectivityR1 = 1/3 consisting of a half-
wave plate(λ/2) and a polarizing-beam-splitter (PBS1). Then the transmission beam is split
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Figure 1. The schematic of the tripartite entangled state generation system.

again by a 50–50(T2 = R2 = 1/2) beam-splitter (λ/2 and PBS2) into two parts. The obtained
optical modeŝc1(x̂1, ŷ1), ĉ2(x̂2, ŷ2) and ĉ3(x̂3, ŷ3) are in a tripartite squeezed state with both
variances of the total amplitude quadratures of the three modes〈δ2(x̂1 + x̂2 + x̂3)〉 and the relative
phase quadratures of each pair-mode〈δ2(ŷk − ŷm)〉(k, m = 1, 2, 3, k 6= m), smaller than the
corresponding shot noise limit (SNL). The measured original correlations between the signal
and idler modes from the NOPA are about 4 dB below the SNL. After the correction to the
electronic noise floor the noise reduction is−5.8 dB relative to the SNL and the corresponding
squeezing parameter isγ ≈ 0.674. The values of the left-sides of the inequalities for the
inseparability criteria of the three modes are:

I.
〈
δ2(ŷ1 − ŷ2)

〉
+

〈
δ2(x̂1 + x̂2 + x̂3)

〉
= 0.475< 1,

II .
〈
δ2(ŷ2 − ŷ3)

〉
+

〈
δ2(x̂1 + x̂2 + x̂3)

〉
= 0.735< 1, (3)

III .
〈
δ2(ŷ1 − ŷ3)

〉
+

〈
δ2(x̂1 + x̂2 + x̂3)

〉
= 0.457< 1,

here, we employedgi = 1 for all i to make the verification simpler. Ifgi are optimized togopt
i

the values of correlation combination in the right-sides of equations (3) must be smaller. All
correlation combinations are smaller than the normalized SNL and thus the modesĈ1, Ĉ2 and
Ĉ3 are fully inseparable.

Furusawa’s group in Tokyo obtained experimentally a cv tripartite entangled state with full
inseparability by combining three independent squeezed vacuum states, which are generated
from three subthreshold degenerate optical parametric oscillators (OPO) OPOl, OPO2 and
OPO3, respectively, as shown in figure2 [11]. A quadrature-phase squeezed state from
OPO1 and two quadrature-amplitude squeezed states from OPO2 and OPO3, respectively
are combined in a ‘tritter’ consisting of two beam-splitters with transmittance/reflectivity
of 1/2 (BS1) and 1/1 (BS2). The measured average noise powers of the relative amplitude
quadratures〈δ2(x̂1 − x̂2)〉, 〈δ2(x̂2 − x̂3)〉 and〈δ2(x̂3 − x̂1)〉, and that of the sum of all three phase
quadratures〈δ2(ŷ1 + ŷ2 + ŷ3)〉 are 1.95, 2.04, 1.78 and 1.75 dB below the SNL, respectively,
the corresponding values of the left-sides of the inequalities in equations (1) are about 0.851,
0.840 and 0.867, respectively (gi = 1 for all three modes). In their experiment, three balanced
homodyne detectors were employed and the full inseparability of cv among three optical modes
was directly demonstrated.
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OPO3

OPO1OPO2

Figure 2. Schematic of tripartite entangled state generation by combining three
independent squeezed vacuum states. OPO1–3: optical parametric oscillators
1–3, BS1: beam-splitter of 1 : 2 BS2: beam-splitter of 1 : 1.
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Figure 3. Schematic for controlled dense coding quantum communication.

3. Controlled dense coding quantum communication using tripartite entanglement of cvs

We theoretically proposed [19] and then experimentally realized [10] the controlled dense
coding quantum communication network for cv using a tripartite entangled state of optical
modes with directly detectable intensity. The three entangled modesĈ1, Ĉ2 and Ĉ3 are
distributed to a sender (Alice), a receiver (Bob) and a controller (Claire), respectively (figure3).
The sender Alice modulates two sets of classical signalsXs and Ys on the amplitude and
phase quadratures of her modeĈ1 by the amplitude and phase modulators (AM and PM).
The modulated signalsXs and Ys at a given radio frequency (RF) can be considered as the
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artificial noise added on the amplitude and phase quadratures, respectively. The modulated mode
Ĉ′

1 is sent to Bob who decodes simultaneously the modulated amplitude(Xs) and phase(Ys)

signals with the Bell-state direct measurement (BDM) equipment under the aid of his mode
Ĉ2 [6, 22]. Taking into account the imperfect detection efficiency of the photodiodes(η < 1)

and the nonzero losses of the optical system(ξi < 1), the noise power spectra of the sum and
the difference photocurrents ofĈ′

1 andĈ2 modes are expressed by [10]:〈
(δ2i 2

+)
〉
= 〈δ2(x̂C′

1
+ x̂C2)〉 = η2ξ2

1

e2r + 8e−2r
− 9

12
+ 1 +

1

2
Vxs, (4)

〈
(δ2i 2

−
)
〉
= 〈δ2(ŷC′

1
− ŷC2)〉 = 3η2ξ2

1

e−2r
− 1

12
+ 1 +

1

2
Vys, (5)

whereVxs andVys are the fluctuation variances of the modulated signals(xs, ys). The first term
of equations (4) and (5) is the noise background formed by the quantum noise which affects the
signal-to-noise ratio (SNR) of the measurement. When the squeezing parameter tends to infinity
(r → ∞), Bob only can measure the phase signal (equation (5)) with high SNR, however, he
cannot gain the amplitude signal that is submerged in large noise background due to the presence
of the antisqueezing noise term e2γ (equation (4)). The physical reason is that the modes
Ĉ1, Ĉ2 and Ĉ3 construct a three-mode ‘position’ eigenstate with total amplitude quadrature
〈δ2(x̂C1 + x̂C2 + x̂C3)〉 → 0 and the relative phase quadratures〈δ2(yCk − yCm)〉 → 0 (k 6= m) in
this case [8, 10]. For extracting the amplitude signal, Bob needs Claire’s detecting result〈δ2x̂C3〉

of the amplitude quadrature of modeĈ3 using a photodiode (D). If Claire sends the detected
photocurrent̂i3 to Bob, Bob displaces Claire’s result onî+ to generate a total photocurrent:

î ′

+ = î+ + gî3, (6)

whereg describes the gain at Bob for the transformation from Claire’s photocurrent to Bob’s
sum photocurrent. The calculations in [10, 19] pointed out that the optimal gain isgopt =

1
√

2
for

an ideal case ofγ → ∞, η → 1 andξ → 1. For simplification, in our experiments the gain was
adjusted to the value of1√

2
and the measured results were not affected severely although the

conditions are not ideal. The variance ofî ′

+ is equal to:

〈δ2î ′

+〉 =
1

12

{
e2r η2

[
ξ2

2 − ξ2
1

ξ1

]2

+ 2e−2r η2

[
ξ2

2 − 2ξ2
1

ξ1

]2

−3

[
ξ4

2

ξ2
1

η2
− 4 + 3η2ξ2

1 + 2ξ2
2η2

− 2
ξ2

2

ξ2
1

]
+

1

2
VXs

}
. (7)

The antisqueezing term (e2γ ) is significantly decreased and thus the SNR ofXs is improved.
Especially, ifξ2 = ξ1, the large noise term will disappear. This means that Claire can control
the information transmission capacity between Alice and Bob by sending or not sending the
photocurrent̂i3 to Bob. The channel capacities without(Cdense

n−c ) and with(Cdense
c ) Claire’s help

deduced from equations (4), (5) and (7) are expressed in equations (8) and (9), respectively:

Cdense
n−c =

1

2
ln

[(
1 +

σ 2

〈δ2î−〉

) (
1 +

σ 2

〈δ2î+〉

)]
, (8)

Cdense
c =

1

2
ln

[(
1 +

σ 2

〈δ2î−〉

) (
1 +

σ 2

〈δ2i ′
+〉

)]
, (9)
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(a) (b)

Figure 4. (a) The noise power spectra of amplitude sums〈δ2î ′

+〉 (trace 3) and
〈δ2î+〉 (trace 2), trace 1-shot noise limit (SNL), trace 4—electronics noise level
(ENL), measured frequency range 1.5–2.5 MHz, resolution bandwidth 30 KHz,
video bandwidth 0.1 KHz. (b) The noise power spectra of phase difference〈δ2î−〉

(trace 2), trace 1—SNL, trace 3—ENL, measured frequency range 1.5–2.5 MHz,
resolution bandwidth 30 KHz, video bandwidth 0.1 KHz.

whereσ 2 is the average value of the signal photon numbers. The photon numbers supplied to
the communication system are used for the signal and squeezing. The total mean photon number
(n̄) involved in each optical mode is equal to [18]

n̄ = σ 2 + sinh2 γ. (10)

Figure4 shows the power fluctuation spectra measured in our experiment. The traces 2
and 3 in figure4(a) are the noise spectra for the amplitude sum photocurrents of two (trace 2
for 〈δ2î+〉) and three (trace 3 for〈δ2î ′

+〉) optical modes, which are 1.0 and 2.7 dB below the
SNL (trace 1), respectively. After the correction to the electronics noise floor, which is about
8 dB below the SNL (trace 4), the noise reductions of〈δ2î+〉 and 〈δ2î ′

+〉 relative to the SNL
should be actually 1.19 and 3.28 dB, respectively. Trace 2 in figure4(b) is the measured noise
power spectrum of〈δ2î−〉 = 〈δ2(yc1 − yc1)〉 for the relative phase-quadrature correlation between
modesc1 andc2, which is 2.66 dB below the SNL (trace l). Accounting for the electronics noise
(trace 3), it should actually be 3.18 dB below the SNL. Substituting the measured noise powers
of 〈δ2î+〉, 〈δ2î ′

+〉 and 〈δ2î−〉 into equations (4)–(7), the squeezing parameter ofγexp ≈ 0.674
is calculated. The dependences of the channel capacities with(Cdense

c ) and without(Cdense
n−c )

Claire’s help on the mean photon numbern̄ are given in figure5 according to the experimental
parameters.

For comparison the channel capacity of an ideal single mode coherent state [Ccoh
=

ln(1 + n̄)] is also drawn in figure5. We can see that, under the experimental conditions, the
channel capacity with the help of Claire(Cdense

c ) is always larger than that without her help
(Cdense

n−c ) which is the result of SNR improvement due to using three-partite entanglement. For
example, when̄n = 11, the channel capacity of the presented system can be controllably inverted
between 2.91 and 3.14. The experiment shows that using the accessible entanglement of optical
modes the channel capacity of the controlled dense coding quantum communication can exceed
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Figure 5. The dependences of the channel capacities on the mean photon number.

that of classical optical communication with a coherent state(Ccoh) when the mean photon
numbern̄ is larger than 1.00.

4. Quantum state secret sharing

Secret sharing is a powerful protocol for secure communication based on the interdependence
among all shares. Blakely [23] and Shamir [24] proposed the scheme of the threshold secret
sharing for classical information in 1979, which is to distribute a secret information ton shares
firstly and to establish the interconnection among then parties. In this construction, the secret
information can be recovered only whenk (k6 n) shares collaborate and if the numbers of
the collaborators are less thank the secret message cannot be extracted, this scheme was
therefore named(k, n) threshold secret sharing. In quantum information science the shares of
information are quantum states and the security of the communication can be enhanced using
multipartite quantum entanglement distributed among these shares. Cleveet al [25] proposed
the scheme of(k, n) threshold QSS for discrete states (qubits), in which the ‘dealer’ encodes a
secret state into ann-party entangled state and distributes it ton ‘players’. Any k players (the
access structure) can collaborate to retrieve the quantum secret state, whereas the remaining
n − k players (the adversary structure), even when conspiring acquire nothing. Then Lance
et al [26] theoretically proposed and experimentally demonstrated [27] (2, 3) threshold QSS
utilizing tripartite cv entanglement. In their scheme, a secret coherent state was encoded into a
tripartite entangled state and distributed to three players. The experimental results proved that
any two of the three players can form an access structure to reconstruct the secret state. The state
reconstruction was characterized in terms of fidelity, signal transfer and reconstructure noise.

The experimental schematic of (2, 3) QSS is shown in figure6. The dealer combines two
single-mode squeezed states (âSQZ1andâSQZ2) produced from the two degenerate OPAs on a 1 : 1
beam-splitter (S1) to generate a pair of EPR entangled beams (âEPR1andâEPR2). Then, the dealer
interferes beamŝaEPR1and the secret statêain on another 1 : 1 beam splitter(S2). The two output
fields fromS2 and the second entangled beamâEPR2 form a tripartite entangled state (â1, â2 and
â3) which are distributed to player 1, player 2 and player 3. The dealer can further enhance
the security of the scheme by displacing the coherent amplitudes of the shares with correlated
Gaussian white noise [26]. Choosing the Gaussian noise to have the same correlations as the
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Figure 6. Schematic of the (2, 3) QSS scheme;âin, input secret quantum state;
OPA, optical parametric amplifier; G, electronic gain; AM, amplitude modulator;
LO, optical local oscillator and S1−4, beam-splitter.

quadrature entanglement, the shares can be expressed as

â1 = (âin + âEPR1+ δN)/
√

2, (11)

â2 = (âin − âEPR1− δN)/
√

2, (12)

â3 = âEPR2+ δN∗, (13)

whereδN = (δ X̂N + iδŶN)/2 represents the Gaussian noise with meanδ X̂N = δŶN = 0 and
δ2X̂N = νXN , δ2ŶN = νYN , δN∗ is the complex conjugate ofδN̂.

Combining modeŝa1 andâ2 with a 1 : 1 beam-splitter(S3), the annihilation operator of the
output field can be calculated with equations (11) and (12):

âout1 =
â1 + â2
√

2
= âin. (14)

This means that players 1 and 2 (henceforth denoted by{1, 2}) only need to complete a Mach–
Zehnder interferometer with use of a 1 : 1 beam-splitter to retrieve the secret state. For the access
structures{2, 3} and{1, 3}, we can reconstruct the quantum state by utilizing a 2 : 1 beam-
splitter and an electro-optic feedforward loop [26]. As an example, we discuss the{2, 3} access
structure. The amplitude and phase quadratures of the output modesb̂ andĉ from a 2 : 1 beam-
splitter(S4) are expressed by [26]

X̂b =
1

√
3
(ŶSQZ2− ŶSQZ1+ X̂in − 2δ X̂N), (15)

Ŷb =
1

√
3
(X̂SQZ1− X̂SQZ2+ Ŷin), (16)

X̂C =
[(ŶSQZ1− ŶSQZ2) − 3(X̂SQZ1+ X̂SQZ2) + 2(X̂in + δ X̂N)]

√
24

(17)
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ŶC =
[(X̂SQZ1− X̂SQZ2) − 3(ŶSQZ1+ ŶSQZ2) + 2(Ŷin − 3δŶN)]

√
24

(18)

where, X̂SQZ1(2) and ŶSQZ1(2) are the amplitude and phase quadrature of the squeezed state
âSQZ1(2) from two OPAs.X̂in and Ŷin denote the amplitude and phase quadrature of the input
secret state(âin). For the ideal case with perfect squeezing the varianceδ2X̂SQZ1(2) tends to zero.
In this case, it is obvious from equation (16) that the phase quadratureŶin of âin is reconstructed
in Ŷb of modeb̂. Comparing equations (15) and (17), we can see that if the amplitude noise
of mode ĉ is measured and then the measured photocurrent is fed back to modeb̂ with an
appropriate gain, the anti-squeezed noise(ŶSQZ) and the attached Gaussian white noise (δ X̂N)

can be eliminated. In the experiment of [27] the photocurrentδ I of modeĉ was directly detected
and the amplitude of a local light (LO) was modulated byδ I . Then modêb was displaced by
the modulated LO with a high reflecting beam-splitter S5 (50 : 1) to reconstruct the amplitude
quadrature of̂ain on the output modêaout2. The measured photocurrentδ I equals

δ I =
√

η〈X̂C〉

{1

2

√
1/3

√
η

[
1

√
2
(δŶSQZ1− δŶSQZ2)

]
−

3
√

2
(δ X̂SQZ1+ δ X̂SQZ2) +

√
2(δ X̂N + δ X̂in) +

√
1− ηδ X̂d

}
, (19)

whereη and δ X̂d are the efficiency of the detector (D) and the vacuum noise added due to
imperfect detection, respectively. The amplitude and phase quadrature of modeâout2 is

X̂out2(Ŷout2) =
√

1− ε X̂b(Ŷb) +
√

ε X̂LO(ŶLO), (20)

whereε denotes the reflectivity of S5 (ε = 1/50 for this experiment),̂XLO andŶLO expresses the
amplitude and phase quadrature of the LO, respectively. Ifε → 0, equation (20) becomes

X̂out2 ≈ X̂b + k(ω)δ I ,
(21)

Ŷout2 ≈ Ŷb,

wherek(w) is the gain transformation function after accounting for the imperfect response of
the feedback circuit and the optical loss of the beam-splitter S5. Substituting equations (15), (16)
and (19) into equations (21) the following expressions are obtained

δ X̂out2 =

(
1

√
3

+
G
√

6

)
δ X̂in +

(
G

2
√

6
−

1
√

3

)
(δŶSQZ1− δŶSQZ2)

−
G

2

√
3/2(δ X̂SQZ1+ δ X̂SQZ2) + G

√
1− η

η
δ X̂d +

(
2

√
3

−
G
√

6

)
δ X̂N (22)

δŶout2 =

√
1

3
δŶin −

√
1

3
(δ X̂SQZ1− δ X̂SQZ2), (23)

whereG = ηk(ω)〈X̂C〉 is the total gain of the feedback circuit. IfG = 2
√

2 is selected, the
antisqueezed term(δŶSQZ) and the attached noise(δ X̂N) will be totally eliminated. For the ideal
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limitation with perfect squeezing(δ X̂SQZ → 0), we have

δ X̂out2 =
√

3δ X̂in,

(24)

δŶout2 =
1

√
3
δŶin.

Thus,{2, 3} QSS can reconstruct the transformation of the input secret quantum state(âin).
Since the transformation is a local unitary operation the quantum information of the input state
will not be lost. With a similar scheme the{1, 3} QSS can also be completed.

The overlap between the input secret and reconstructed quantum state is expressed with the
fidelityF = 〈ain|ρout|ain〉, thus the quality of the state reconstruction for the access and adversary
structures in QSS can be measured by the fidelity, usually [28]. Assuming that all fields involved
have Gaussian statistics and that the input state is a coherent state, the fidelity can be expressed
in terms of experimentally measurable parameters as

F = 2e−(K ++K −)/4/

√
(1 +〈δ2X̂out〉)(1 +〈δ2Ŷout〉), (25)

where K +
= 〈X̂in〉

2(1− g+)2/(1 +〈δ2X̂out〉), K −
= 〈Ŷin〉

2(1− g−)2/(1 +〈δ2Ŷout〉), g+
=

〈X̂out〉/〈X̂in〉 and g−
= 〈Ŷout〉/〈Ŷin〉 are the gains of amplitude and phase quadratures, re-

spectively. In the experiment with figure6, the fidelity for{1, 2} can be determined directly.
However, for{2, 3} and{1, 3} the fidelity is determined by inferring the unitary parametric
operation

δ X̂para=
1

√
3
δ X̂out,

(26)

δŶpara=
√

3δŶout,

on the reconstructed state, so in the ideal case we haveδ X̂para= δ X̂in and δŶpara= δŶin (see
equations (24)). This means that the input state is perfectly reconstructed. When the protocol
is operating at unitary gain, under ideal conditions any one of the access structures can achieve
F = 1 corresponding to perfect reconstruction of the input secret quantum state, whilst the
corresponding adversary structure obtainsF = 0.

In the experiment of [27] the two OPA were pumped by green light at 532 nm which
was the output second harmonic wave from a CW Nd : YAG frequency doubled laser. The
output fundamental wave at 1064 nm served as a coherent field to provide a shared time
frame (universal local oscillator) between all parties, to yield the dealer secret by displacing
the sideband vacuum state of the laser field using an amplitude and a phase modulator at
6.12 MHz, and to produce two amplitude squeezed states from hemilithic MgO : LiNbO3 OPAs
pumped with 532 nm light. The output fields of each OPA were squeezed at 4.5± 0.2 dB
below the quantum noise limit. The two squeezed light beams were interfered on a 1 : 1 beam-
splitter (S1) with an observed visibility of 99.2± 0.2% and a controlled relative phase ofπ/2.
The beam-splitter outputs were EPR entangled which satisfied the wavefunction inseparability
criterion [9]. The measured correlation product was

1

4

[
〈(δ X̂EPR1+ δ X̂EPR2)

2
〉 · 〈(δŶEPR1− δŶEPR2)

2
〉

]
= 0.44± 0.02< 1. (27)

In order to enhance the security of the secret state against the adversaries, the coherent
quadrature amplitudes of the entangled beams are displaced with Gaussian noise. The variance
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of this noise was characterized to beVN = 3.5± 0.1 dB normalized to the quantum noise limit.
A homodyne detector was used to characterize the secret, adversary and reconstructed quantum
states using a configuration of removable mirrors. The total homodyne detection efficiency,
ηhom = 0.89± 0.01, is inferred out of each measurement. The fidelities can be calculated
from these measured variances of the amplitude and phase quadratures [27]. The fidelity
obtained from the noise spectra wasF{1,2} = 0.93± 0.02 with optical quadrature gains ofg+

=

0.94± 0.01 andg−
= 0.97± 0.01, respectively. The corresponding adversary{3} structure had

a fidelity of F{3} = 0 since their share contained no component of the input secret state. The
measured fidelity at the unitary gain point for the{2, 3} protocol wasF{2,3} = 0.63± 0.01
with g+g−

= (1.77± 0.01)(0.58± 0.01) = 1.02± 0.01. The corresponding adversary structure
{1} achieves a fidelity of onlyF{1} = 0.03± 0.01. The quantum nature of this experiment was
demonstrated by the fidelity averaged over all the access structuresFclas

avg = 0.74± 0.04, which
exceeded the classical limitFclas

avg = 2/3. Without entanglement the maximum fidelity achievable
by {2, 3} and{1, 3} is Fclas

{2,3}
= Fclas

{1,3}
= 1/2 whilst {1, 2} can still achieveFclas

{1,2}
= 1, so the

average fidelity achieved by all permutations of the access structure cannot exceedFclas
avg = 2/3.

This defines the classical boundary for{2, 3} threshold QSS. For a general{k, n} threshold QSS
scheme, independent of the dealer protocol, the maximum average classical fidelity achievable
without entanglement resources isFclas

avg = k/n. If Favg exceedsk/n, quantum resources must
be utilized and thus the communication protocol is in the quantum information realm.

5. Prospection

Multipartite entanglement shared by more than two parties is a subtle issue and also a
necessary resource for achieving quantum communication networks and quantum computation.
The quantification of multipartite entanglement of more than three parties in Gaussian states
was theoretically analyzed and the experimental accessibility with the optimal fidelity of
cv teleportation networks was discussed recently [29]. A nice review article on multipartite
entanglement for cv systems, which is more focused on theoretical aspects [30], is a good
complement to the present paper. The quadripartite cluster and GHZ entangled states for cvs
have been experimentally prepared by our group [31]. Menicucciet al [32] theoretically proved
that the universal quantum computation can be achieved with cv cluster states as long as a non-
Gaussian measurement can be performed. The multipartite entanglement of cvs provides rich
and valuable resources for quantum information. The quantum optical implementations based
upon cvs offer us an efficient approach to demonstrate experimentally the general principles of
quantum information science and technology.
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