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Abstract. A variety of optical quantum information networks based on
the multipartite entanglement of amplitude and phase quadratures of an
electromagnetic field have been proposed and experimentally realized in recent
years. The multipartite entanglement of optical continuous variables provides
flexible and reliable quantum resources for developing unconditional quantum
information networks. In this paper, we review the generation schemes of the
multipartite entangled states of optical continuous quantum variables and some
applications in the quantum communication networks with emphasis on the
experimental implementations.
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1. Introduction

Multipartite entanglement is one of the most fundamental and important quantum resources
for developing quantum communication networks. To characterize the entanglement of states
shared by many parties Coffman, Kundu and Wootters (CKW) discovered so-called ‘monogamy
inequalities’, constraining the maximal entanglement distributed among different internal
partitions of a multiparty systeml]. Then Adesso and llluminati introduced a measure of
entanglement for continuous-variable (cv) systems to quantify the distributed entanglement
in multimode, multipartite Gaussian states and proved that the cv entanglement satisfies the
CKW monogamy inequality in all three-mode Gaussian states, and in all fully symmetric
N-mode Gaussian states, for arbitrddy[2]. A complete quantitative theory of multipartite
entanglement based on the monogamy of entanglement has been discussed in d&tajl in [
Originally, the quantum information was developed in discrete variable (dv) systems and
then was extended to the cv setting. In recent years, cv quantum information has attracted
extensive interest due to the high efficiency in the generation, manipulation and detection of
optical cv states4]. The successful realization of unconditional quantum teleportatgn [
dense codingd] and entanglement swapping] pbased on cv Einstein—Podolsky—Rosen (EPR)
entangled states of optical fields promoted investigations into the generation and application
of cv multipartite entangled states. van Loock and Brauns&iprpposed a scheme to produce

cv multipartite entanglement using single-mode squeezed states and linear optics and designed
a quantum teleportation network for its application in 2000. The necessary conditions and
the experimental criteria to detect genuine multipartite cv entanglement were derived by van
Loock and Furusawa9]. Successively, cv tripartite entangled states of optical fields were
experimentally obtained and applied in controlled dense coding quantum communication,
tripartite quantum state sharing (QSS) and a quantum teleportation network by three groups
in China, Japan and Australia, respectivel@]f-[13]. The equivalence between entanglement
and the optimal fidelity of cv teleportation was theoretically proved.[It was shown in 14]

that a non-classical optimal fidelity &f-user teleportation networks is necessary and sufficient
for N-party entangled Gaussian resources and thus allows for the definition of the entanglement
of teleportation, an operative estimator of multipartite entanglement in a cv system.

The aim of writing this paper is not to present a comprehensive review on cv
guantum entanglement and communication. We would like to emphasize the experimental
implementations of cv multipartite entanglement generation with quantum optical systems
and its applications in quantum communication networks. In this paper, we will introduce the
experimental schemes for generating cv multipartite entanglement of optical fields in section
firstly, in which we concentrate on three-mode Gaussian states. Then two experimental systems
for two applications of tripartite cv entangled states in quantum communication networks will
be briefly described in sectiorBsand 4, respectively. Finally, a short prospection is given in
sectionb.

2. Generation of multipartite cv entangled states

Quantum entanglement shared by more than two parties is named multipartite entanglement.
Very recently, an extended study on how to produce, detect and employ multipartite
entanglement for quantum communication with three-mode Gaussian states in an optical context
was analyzed in depth and a simple procedure to produce pure three-mode Gaussian states
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with arbitrary entanglement structure was introducéf].[ A mathematical framework for

the characterization of separability and entanglement of formation of general bipartite states
has been developed by Audenettal [16]. In the quantum optical realm, we consider the
multipartite entangled states consisting of the multipart multi-mode with one mode per party,
and the amplitude and phase quadratures of electromagnetic modes are used for the continuous
guantum variables. The sufficient conditions for verifying unambiguously the presence of
genuine multipartite entanglement among optical modes were given in terms of the variances
of the amplitude and phase quadrature combination®]in/ set of inequalities containing

the conjugate variables of all modes provides reliable criteria for the verification of the
cv multipartite entanglement. The violations of the inequalities are sufficient for genuine
multipartite entanglement. Based on these inequalities, we can check the full inseparability
of an optical state by the experimentally measurable variances of the quadrature combinations.
For example, we consider the cv analog8gl[7] of the Greenberger—Horne—Zeilinger (GHZ)
state [Lg involving three entangled modes. In this case, the inequalities are written as
follows [9].

L (82— %))+ (821 + 92+ GsF3)) > 1,
I (8%(Re— Re)) +(8%(OaSn + §2+ 93)) > 1., 1)
. (8%(Ry — Ra)) + (8% (S + Q¥ + 93)) > 1,

whereX; andy; (i =1, 2, 3) stand for the amplitude and phase quadratures of the three modes,
respectively. Thej; are arbitrary real parameters named the gain parameters. The optimum gains
gf’pt are adjusted to minimize the left-hand sides of the inequalities in equafiprist{as been
proved in P] that the violation of any two of the three inequalities in equatid)sy sufficient
for genuine tripartite three-mode entanglement.

van Loock and Braunstein8] firstly proposed a scheme to produce multipartite
entanglement for cv of an optical field with the superposition of independently squeezed states
and theoretically proved that even one single-mode squeezed state is sufficient for yielding a
truly multipartite entangled state through the linearly optical transformation. Later, we designed
a system generating a cv tripartite entangled state with a bright two-mode squeezed state from
a non-degenerate optical parametric amplifier (NOPA) operating at deamplificafprThe
two-mode squeezed state generated from the NOPA consists of a signalxgoge and an
idler mode(X;, §) with orthogonal polarizations and identical frequency. The amplitude and
phase quadratures of the signal and idler modes are anticorrelated and correlated respectively,
i.e. both variances of the sum of amplitude quadrat{#&s + %)) and the difference of phase
quadraturess?(9s — i) are smaller than the shot noise limit (SNL). The correlation variances
depend on the squeezing parametaf the two-mode squeezed sta#®[21]:

(6%(%s+ %)) = (6%(9s — 1)) = 27", 2
y is a positive real function of the noise frequern(€¥) with a value between zero and infinity.
y =0,y > 0andy — oo correspond to no quantum correlation, partial correlation and perfect
correlation, respectively. The schematic of the tripartite entangled state generation system from
a NOPA is shown in figurd [10]. The two-mode squeezed state from NOPA is split by a
beam-splitter of the transmissidn = 2/3 and the reflectivityR; = 1/3 consisting of a half-
wave plate(1/2) and a polarizing-beam-splitter (PBS Then the transmission beam is split
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Figure 1. The schematic of the tripartite entangled state generation system.

again by a 50-5QT, = R, = 1/2) beam-splitter { /2 and PB$) into two parts. The obtained
optical mode<;(Xq, ¥1), €(Xo, §») and €3(Xs, ¥3) are in a tripartite squeezed state with both
variances of the total amplitude quadratures of the three maéigs + X, + X)) and the relative
phase quadratures of each pair-mdd& i, — 9m))(k, m=1, 2, 3, k£ m), smaller than the
corresponding shot noise limit (SNL). The measured original correlations between the signal
and idler modes from the NOPA are about 4 dB below the SNL. After the correction to the
electronic noise floor the noise reduction-5.8 dB relative to the SNL and the corresponding
squeezing parameter g~ 0.674. The values of the left-sides of the inequalities for the
inseparability criteria of the three modes are:

L (825 — $)) +(8%(Re + %2+ %3)) = 0.475< 1
. (8252 — §3)) +(8°(Re + K2 + R5)) = 0.735< 1, 3)
. (8%(5n— §a)) +(8°(Ry + 2+ X3)) = 0.457 < 1,
here, we employed; = 1 for all i to make the verification simpler. t, are optimized tcpjo'ot
the values of correlation combination in the right-sides of equatiBpns(st be smaller. All
correlation combinations are smaller than the normalized SNL and thus the Qgdésand
C; are fully inseparable.

Furusawa’s group in Tokyo obtained experimentally a cv tripartite entangled state with full
inseparability by combining three independent squeezed vacuum states, which are generated
from three subthreshold degenerate optical parametric oscillators (OPO) OPOI, OPO2 and
OPO3, respectively, as shown in figuke[11]. A quadrature-phase squeezed state from
OPO1 and two quadrature-amplitude squeezed states from OPO2 and OPQO3, respectively
are combined in a ‘tritter’ consisting of two beam-splitters with transmittamtkectivity
of 1/2 (BS1) and 11 (BS2). The measured average noise powers of the relative amplitude
quadraturess?(X, — X»)), (8%(%2 — X3)) and(82(Xs — X1)), and that of the sum of all three phase
quadraturegs?(9, + §» + ¥3)) are 1.95, 2.04, 1.78 and 1.75dB below the SNL, respectively,
the corresponding values of the left-sides of the inequalities in equatip@sg about 0.851,

0.840 and 0.867, respectivelg; = 1 for all three modes). In their experiment, three balanced

homodyne detectors were employed and the full inseparability of cv among three optical modes
was directly demonstrated.
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Figure 2. Schematic of tripartite entangled state generation by combining three
independent squeezed vacuum states. OPO1-3: optical parametric oscillators
1-3, BS1: beam-splitter of 1: 2 BS2: beam-splitter of 1: 1.

Figure 3. Schematic for controlled dense coding quantum communication.

3. Controlled dense coding quantum communication using tripartite entanglement of cvs

We theoretically proposedlf] and then experimentally realized(] the controlled dense
coding quantum communication network for cv using a tripartite entangled state of optical
modes with directly detectable intensity. The three entangled m@de<, and C; are
distributed to a sender (Alice), a receiver (Bob) and a controller (Claire), respectively @igure
The sender Alice modulates two sets of classical sigialsand Ys on the amplitude and
phase quadratures of her mo@e by the amplitude and phase modulators (AM and PM).
The modulated signalXs and Ys at a given radio frequency (RF) can be considered as the
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artificial noise added on the amplitude and phase quadratures, respectively. The modulated mode
Ci is sent to Bob who decodes simultaneously the modulated ampliXgjeand phase&Y;)

signals with the Bell-state direct measurement (BDM) equipment under the aid of his mode
¢, [6, 22]. Taking into account the imperfect detection efficiency of the photodigges 1)

and the nonzero losses of the optical systénx 1), the noise power spectra of the sum and

the difference photocurrents éfl andC, modes are expressed B

_ A e +8e% -9 1

((8%2)) = (8%(Re; +Rc,)) = nzsz 145 Vs, (4)
_ . . e -1 1

((6%1%)) = (6*(Ye; — Jc,)) = 3772512T 145V, ()

whereV,, andV,, are the fluctuation variances of the modulated sigtalsys). The first term

of equations4) and 6) is the noise background formed by the quantum noise which affects the
signal-to-noise ratio (SNR) of the measurement. When the squeezing parameter tends to infinity
(r - o0), Bob only can measure the phase signal (equabpnwith high SNR, however, he
cannot gain the amplitude signal that is submerged in large noise background due to the presence
of the antlsqueezmg noise ternd” glequation ¢)). The physical reason is that the modes

€1, €, and &5 construct a three-mode ‘position’ eigenstate with total amplitude quadrature
(82(Xc, +Xc, +Xc,)) — 0 and the relative phase quadratutéqyc, — yc,,)) — 0 (k# m) in

this case$, 10]. For extracting the amplitude signal, Bob needs Claire’s detecting r@sii,)

of the amplitude quadrature of mod using a photodiode (D). If Claire sends the detected
photocurrents to Bob, Bob displaces Claire’s result énto generate a total photocurrent:

i =i, +gis, (6)
whereg describes the gain at Bob for the transformation from Claire’s photocurrent to Bob’s

sum photocurrent. The calculations 0] 19) pointed out that the optimal gain @ = \i@ for

an ideal case of — oo, n — 1 andé¢ — 1. For simplification, in our experiments the gain was
adjusted to the value o% and the measured results were not affected severely although the

conditions are not ideal. The variancei bfs equal to:

28 _i r |:52 gl:| —2r |:‘§2 2$1i|
(8 |+>_12{e2n E +2e E

3 S
Lzznz_4+3n E2+ 282y gi]+2VXS}. (7)

The antisqueezing term#9 is significantly decreased and thus the SNRX8fis improved.
Especially, ifé, = &, the large noise term will disappear. This means that Claire can control
the information transmission capacity between Alice and Bob by sending or not sending the
photocurrent3 to Bob. The channel capacities W|thc(mde”53 and with (Cdense) Claire’s help
deduced from equationd)( (5) and (7) are expressed in equatior® and Q), respectively:

2 2
et ol (o) (o035 :
2" +(62i_) +(32i+) ®)

dense 02 02
Ce 2In[( +<32f_>> (1+<82i’+>>]’ ®)
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Figure 4. (a) The noise power spectra of amplitude su@?,) (trace 3) and
(821,) (trace 2), trace 1-shot noise limit (SNL), trace 4—electronics noise level
(ENL), measured frequency range 1.5-2.5 MHz, resolution bandwidth 30 KHz,
video bandwidth 0.1 KHz. (b) The noise power spectra of phase differéfice

(trace 2), trace 1—SNL, trace 3—ENL, measured frequency range 1.5-2.5 MHz,
resolution bandwidth 30 KHz, video bandwidth 0.1 KHz.

whereo? is the average value of the signal photon numbers. The photon numbers supplied to
the communication system are used for the signal and squeezing. The total mean photon number
(n) involved in each optical mode is equal 8]

f=o2+sintfy. (10)

Figure 4 shows the power fluctuation spectra measured in our experiment. The traces 2
and 3 in figured(a) are the noise spectra for the amplitude sum photocurrents of two (trace 2
for (52i.)) and three (trace 3 fofs2i’)) optical modes, which are 1.0 and 2.7 dB below the
SNL (trace 1), respectively. After the correction to the electronics noise floor, which is about
8dB below the SNL (trace 4), the noise reductions(&.) and (5%4) relative to the SNL
should be actually 1.19 and 3.28 dB, respectively. Trace 2 in fig{neis the measured noise
power spectrum of2_) = (82(Ye, — Ye,)) for the relative phase-quadrature correlation between
modesc; andc,, which is 2.66 dB below the SNL (trace I). Accounting for the electronics noise
(trace 3), it should actually be 3.18 dB below the SNL. Substituting the measured noise powers
of (821,), (52) and (§%_) into equations 4)—(7), the squeezing parameter pf,~ 0.674
is calculated. The dependences of the channel capacities(@4*y and without(C2e"s
Claire’s help on the mean photon numideaire given in figuré according to the experimental
parameters.

For comparison the channel capacity of an ideal single mode coherent Gfate=[
In(1+n)] is also drawn in figures. We can see that, under the experimental conditions, the
channel capacity with the help of Clait€d"9 is always larger than that without her help
(Cdensy which is the result of SNR improvement due to using three-partite entanglement. For
example, whem = 11, the channel capacity of the presented system can be controllably inverted
between 2.91 and 3.14. The experiment shows that using the accessible entanglement of optical
modes the channel capacity of the controlled dense coding quantum communication can exceed
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Figure 5. The dependences of the channel capacities on the mean photon number.

that of classical optical communication with a coherent st@®" when the mean photon
numbem is larger than 1.00.

4. Quantum state secret sharing

Secret sharing is a powerful protocol for secure communication based on the interdependence
among all shares. Blakel®§ and Shamir 24] proposed the scheme of the threshold secret
sharing for classical information in 1979, which is to distribute a secret informatinrsbhares
firstly and to establish the interconnection amongrhgarties. In this construction, the secret
information can be recovered only wh&n(k < n) shares collaborate and if the numbers of
the collaborators are less th&nthe secret message cannot be extracted, this scheme was
therefore namedk, n) threshold secret sharing. In quantum information science the shares of
information are quantum states and the security of the communication can be enhanced using
multipartite quantum entanglement distributed among these shares.etlalf25] proposed
the scheme ofk, n) threshold QSS for discrete states (qubits), in which the ‘dealer’ encodes a
secret state into an-party entangled state and distributes inttplayers’. Anyk players (the
access structure) can collaborate to retrieve the quantum secret state, whereas the remaining
n—k players (the adversary structure), even when conspiring acquire nothing. Then Lance
et al [26] theoretically proposed and experimentally demonstra®afl (2, 3) threshold QSS
utilizing tripartite cv entanglement. In their scheme, a secret coherent state was encoded into a
tripartite entangled state and distributed to three players. The experimental results proved that
any two of the three players can form an access structure to reconstruct the secret state. The state
reconstruction was characterized in terms of fidelity, signal transfer and reconstructure noise.
The experimental schematic of (2, 3) QSS is shown in figufEhe dealer combines two
single-mode squeezed statégdz; andasqzo) produced from the two degenerate OPAsonal:1
beam-splitter ;) to generate a pair of EPR entangled beafiasd; andagpr,). Then, the dealer
interferes beamécpri and the secret stafg, on another 1: 1 beam splitt€é®,). The two output
fields from S, and the second entangled beagpr,form a tripartite entangled staté;( &, and
a3) which are distributed to player 1, player 2 and player 3. The dealer can further enhance
the security of the scheme by displacing the coherent amplitudes of the shares with correlated
Gaussian white nois€f]. Choosing the Gaussian noise to have the same correlations as the

New Journal of Physics 9 (2007) 314 (http://www.njp.org/)


http://www.njp.org/

9 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

............. REEE. .. Playerl &2
e "\player] ¢
m : al : ‘:

secret state : - e i
: E P

:]J/(l_\‘(’!':) ] : Ssis0:1 )E

nnnnnnnnn
T

YRR R R R R R R R RN R R R R R RN R

L]

u ]
L]

: " "
n [ | [ ]
" L] L]
] i i
" s L] ]
player3 ; :
T '
. ,' a’ﬂ ‘\ J,

----------------------

plaver2 & 3

Figure 6. Schematic of the (2, 3) QSS scherag; input secret quantum state;
OPA, optical parametric amplifier; G, electronic gain; AM, amplitude modulator;
LO, optical local oscillator and;S4, beam-splitter.

guadrature entanglement, the shares can be expressed as

81 = (&n +8gprit SN)/V/2, (11)
& = (&n — agpr1— N)/\/Z (12)
a3 = 8gprot SN, (13)

wheresN = (§Xy +i8Yn)/2 represents the Gaussian noise with méxg =Yy =0 and
82X N = vx,, 82Y N = vy, SN* is the complex conjugate 6.

Combining mode§; anda, with a 1: 1 beam-splittefS;), the annihilation operator of the
output field can be calculated with equatiofi$)(and (L2):

A & +&

Aoutl \/i
This means that players 1 and 2 (henceforth denoted bg}) only need to complete a Mach—
Zehnder interferometer with use of a 1: 1 beam-splitter to retrieve the secret state. For the access
structures{2, 3} and {1, 3}, we can reconstruct the quantum state by utilizing a 2:1 beam-
splitter and an electro-optic feedforward lo@&]. As an example, we discuss thi2, 3} access

structure. The amplitude and phase quadratures of the output @k from a 2 : 1 beam-
splitter (S;) are expressed by f]

=& (14)

~ 1 - ~ ~ N

Xp = ﬁ(quzz— Ysqz1t+ Xin — 28 Xn), (15)
~ 1 - N ~

Yh = ﬁ(XSQn— Xsoz2t Yin), (16)

Ko — [(Ysazi— Ysaz2) — 3(Xsoza+ Xsqza) + 2(Xin +8Xn)]
C —
V24
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V. — [()A(SQ21_ )A(SQZZ) — 3(95(321"' ?SQZZ) +2(Yin — 35Yn)]
C —_—
V24

where, XSQZ]@ and \?SQZJ(Z) are the amplitude and phase quadrature of the squeezed state
asqziz from two OPAs.X;, andY,, denote the amplitude and phase quadrature of the input
secret statéd;,). For the ideal case with perfect squeezing the variaﬁK@,Qzuz) tends to zero.

In this case, it is obvious from equatiob) that the phase quadratuyYg of &, is reconstructed

in Y, of modeb. Comparing equationsL) and (L7), we can see that if the amplitude noise
of mode¢ is measured and then the measured photocurrent is fed back to meille an
appropriate gain, the anti-squeezed nc@%@z) and the attached Gaussian white nois%\()

can be eliminated. In the experiment @] the photocurrent| of modet was directly detected
and the amplitude of a local light (LO) was modulatedsdy Then modeb was displaced by
the modulated LO with a high reflecting beam-splitter(s0 : 1) to reconstruct the amplitude
guadrature ofy, on the output modé, .. The measured photocurretit equals

o (1 1 - -
51 = Vi(Xe) 5y [72@\@@1— aYSQz»]

(18)

3 . . ~ - ~
~ 750X sqzi+ 0 Xsqz + /26K +3%w) +/1= 1Ko}, (19)

wheren and§X4 are the efficiency of the detector (D) and the vacuum noise added due to
imperfect detection, respectively. The amplitude and phase quadrature ofigede

Xouz(Your) = V1 — £ Xp(Yo) + v X0 (Vo). (20)

wheres denotes the reflectivity of-Je = 1/50 for this experiment)X, o and¥, o expresses the
amplitude and phase quadrature of the LO, respectivedy—3f 0, equation 20) becomes

Xoutz = Xp + k(@)1
(21)

Yout2 X Yo,

wherek(w) is the gain transformation function after accounting for the imperfect response of
the feedback circuit and the optical loss of the beam-spligebGostituting equationd p), (16)
and (@9) into equationsZ1) the following expressions are obtained

A 1 G A G 1 A A
dX =—+— )X, ,+| — — — ] (8Y- —5Y-
out2 < 73 Jé) in ( NG \/§) (6Ysqz1 SQz2)

G . . l-n.. (2 G\
—5V/3/26Ksqz+ 6 Xsezd + G T”5Xd+<ﬁ—%)axN (22)

n 1 - 1 . N
Youtz = \/;SYin — \/;(3 Xsoz1— 6 Xsqz2), (23)

where G = nk(w)(Xc) is the total gain of the feedback circuit. 8 = 2¢/2 is selected, the
antisqueezed teri@ Ysqz) and the attached noigéXy) will be totally eliminated. For the ideal
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limitation with perfect squeezin@ XSQZ—> 0), we have

) )A(outz = \/58 )A(im
(24)

Yourz = %BSYin-
Thus, {2, 3} QSS can reconstruct the transformation of the input secret quantum(&tate
Since the transformation is a local unitary operation the quantum information of the input state
will not be lost. With a similar scheme tH4, 3} QSS can also be completed.

The overlap between the input secret and reconstructed quantum state is expressed with the
fidelityF = (ain| pout/@in), thus the quality of the state reconstruction for the access and adversary
structures in QSS can be measured by the fidelity, usu2dly Assuming that all fields involved
have Gaussian statistics and that the input state is a coherent state, the fidelity can be expressed
in terms of experimentally measurable parameters as

F = 26 €K/ (14 (62K (L + (52Fous)), (25)

where K*=(Xn)2(1-g"%/(1+(8*Xouw), K™= (%n)?(1—g)%/ 1 +(Vou)), "=
(Xouw)/{(Xin) and g~ = (You)/(Yin) are the gains of amplitude and phase quadratures, re-
spectively. In the experiment with figu& the fidelity for {1, 2} can be determined directly.
However, for{2, 3} and{1, 3} the fidelity is determined by inferring the unitary parametric
operation

A 1 .
J Xpara: %’8 Xout,

SQpara - \/:-_)’5 ?out,

on the reconstructed state, so in the ideal case we byga= 6 Xi, and §Ypara= 8Yi, (see
equations Z4)). This means that the input state is perfectly reconstructed. When the protocol
is operating at unitary gain, under ideal conditions any one of the access structures can achieve
F =1 corresponding to perfect reconstruction of the input secret quantum state, whilst the
corresponding adversary structure obtdins: 0.

In the experiment ofJ7] the two OPA were pumped by green light at 532 nm which
was the output second harmonic wave from a CW Nd: YAG frequency doubled laser. The
output fundamental wave at 1064 nm served as a coherent field to provide a shared time
frame (universal local oscillator) between all parties, to yield the dealer secret by displacing
the sideband vacuum state of the laser field using an amplitude and a phase modulator at
6.12 MHz, and to produce two amplitude squeezed states from hemilithic MgO : LiKAs
pumped with 532 nm light. The output fields of each OPA were squeezedbai (42 dB
below the quantum noise limit. The two squeezed light beams were interfered on a 1:1 beam-
splitter (§) with an observed visibility of 92 4+ 0.2% and a controlled relative phasemof2.

The beam-splitter outputs were EPR entangled which satisfied the wavefunction inseparability
criterion [9]. The measured correlation product was

(26)

1 A A A A
2 [((5 Xepr1+ 8 Xeprd)?) - (8 Yepri— 5YEPR2)2)] =0.44+002< 1. (27)

In order to enhance the security of the secret state against the adversaries, the coherent
guadrature amplitudes of the entangled beams are displaced with Gaussian noise. The variance
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of this noise was characterized toY¥g = 3.5+ 0.1 dB normalized to the quantum noise limit.

A homodyne detector was used to characterize the secret, adversary and reconstructed quantum
states using a configuration of removable mirrors. The total homodyne detection efficiency,
nhom= 0.89+0.01, is inferred out of each measurement. The fidelities can be calculated
from these measured variances of the amplitude and phase quadr&trehe fidelity
obtained from the noise spectra wWig = 0.93+ 0.02 with optical quadrature gains gf =
0.94+0.01 andg™ = 0.97+0.01, respectively. The corresponding adverga&lystructure had

a fidelity of F3 = 0 since their share contained no component of the input secret state. The
measured fidelity at the unitary gain point for tf2, 3} protocol wasFp 3 = 0.63+0.01

with g*g~ = (1.77+0.01)(0.58+0.01) = 1.02+ 0.01. The corresponding adversary structure
{1} achieves a fidelity of onlyF;, = 0.03+0.01. The quantum nature of this experiment was
demonstrated by the fidelity averaged over all the access stru@fﬁ,@é& 0.74+ 0.04, which

exceeded the classical Iir’rﬁgv'gsz 2/3. Without entanglement the maximum fidelity achievable
by {2, 3} and{1, 3} is Fg% = F3% = 1/2 whilst {1, 2} can still achieveF% =1, so the
average fidelity achieved by all permutations of the access structure cannot E&@é@&/&

This defines the classical boundary {@; 3} threshold QSS. For a genefél n} threshold QSS
scheme, independent of the dealer protocol, the maximum average classical fidelity achievable
without entanglement resourcesl—‘tg',gs = k/n. If Faqexceeds/n, quantum resources must

be utilized and thus the communication protocol is in the quantum information realm.

5. Prospection

Multipartite entanglement shared by more than two parties is a subtle issue and also a
necessary resource for achieving quantum communication networks and quantum computation.
The quantification of multipartite entanglement of more than three parties in Gaussian states
was theoretically analyzed and the experimental accessibility with the optimal fidelity of
cv teleportation networks was discussed receri§.[A nice review article on multipartite
entanglement for cv systems, which is more focused on theoretical aspéftss[a good
complement to the present paper. The quadripartite cluster and GHZ entangled states for cvs
have been experimentally prepared by our gr@&#p.[Menicucciet al[32] theoretically proved

that the universal quantum computation can be achieved with cv cluster states as long as a non-
Gaussian measurement can be performed. The multipartite entanglement of cvs provides rich
and valuable resources for quantum information. The quantum optical implementations based
upon cvs offer us an efficient approach to demonstrate experimentally the general principles of
guantum information science and technology.
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