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One of the important applications of electromagnetically induced transparency �EIT� is to delay and store
light in atomic ensembles. In this paper, the noise spectrum of the delayed quantum light throughout an EIT
medium is investigated. With zero detection frequency, we can have minimum noise of delayed light in
two-photon resonance of EIT, and the noise is larger than the minimum noise at off two-photon resonance due
to the phase-to-amplitude noise conversion. It is shown that the noise for nonzero detection frequency can be
suppressed by operating the system at off two-photon resonance, even when the unavoidable dephasing is
included.
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I. INTRODUCTION

It is well known that the photon is an ideal carrier of
quantum information, but the qubits with the photons are
called flying qubits, because they cannot be stored for a long
time. On the other hand, the atoms may be able to convert
the flying qubits into storage qubits, since atoms can be kept
in a single location for a long time without changing their
quantum states �1�. The research on quantum memory is di-
rected toward developing reliable registering and exchanging
of quantum information, the basic computational elements,
from atoms to photons or vice versa �2–4�, which attracted a
lot of attention in recent years �5–7�. The most far reaching is
the neutral atom quantum computer, for which quantum
theory predicts a different type of computing logic �8�, avail-
able in some cases, to outrun the present classical computers
by many orders of magnitude in processing time.

Most of the investigations about information storage were
carried out in atomic systems, in which atomic coherence
was generated by two distinct optical fields due to the elec-
tromagnetically induced transparency �EIT� �9�. The storing
and releasing of a weak light pulse was theoretically and
experimentally demonstrated in EIT medium �10,11�. Re-
cently the significant progress towards the quantum memory
in mapping a quantum state of light onto a long-lived atomic
state has been reported theoretically �12–15�. The quantum
storage in atoms and the retrieving of coherent states �3�,
single photon state �6�, and Einstein-Podolsky-Rosen �EPR�
entanglement beams �16�, have been demonstrated. Schemes
to investigate quantum entanglement with atomic memory
�17,18� were also reported.

Using atoms as the quantum memory for quantum infor-
mation processing requires efficient means for the prepara-
tion, manipulation, and storage of qubits inscribed into atoms
as well as for the readout of the information of quantum state
from atomic memory. One of the ways to verify the faithful
atomic memory is the measurement of quantum correlations
or noise of the retrieved states �18�. The experiment of EIT
with a squeezed vacuum state demonstrated that the squeez-
ing could be extracted through the EIT medium �19�. Very
recently, the experimental results showed that the excess

noise, which has not yet been explained, was added to the
delayed light in the slow-light EIT medium �20�. Quantum
mechanical treatment for both atomic and field fluctuations
were used in the discussion of the quantum noise of delayed
light, which showed that the quantum states can be well pre-
served in EIT medium under the resonance or in two-photon
Raman resonance �21,22�. On the other hand, the generation
and enhancement of squeezing for the fluorescent light were
presented in three- and four-level atomic systems, and it was
concluded that the effect of spontaneous generated coherence
plays a crucial role in the squeezing spectrum of fluorescent
light �23,24�. These studies show that the atomic coherences
can provide a possible approach not only for the slowing and
storage of light, but also for the noise suppressing of light. In
this paper, we study the quantum noise spectrum of the de-
layed light in EIT medium with two-photon detuning. The
optimum condition for minimizing the quantum noise of the
delayed state at the nonzero detection frequency in a realistic
EIT scheme can be achieved by tuning the two-photon de-
tuning under the condition of quantum coherence of EIT.
Although the dispersion of EIT coherence converts the laser
phase noise into amplitude noise in the transmitted probe
beam, the large phase-to-amplitude noise can be suppressed
when a proper two-photon detuning and a detection fre-
quency are chosen.

II. THE THEORETICAL MODEL

Consider a closed three-level �-type system, as shown in
Fig. 1. A strong coupling laser of frequency �c interacts with
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FIG. 1. Schematic of the �-type system.
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�c�↔ �a� transition, while a weak quantum probe beam with
frequency �p interacts with transition �b�↔ �a�. �0=�ac−�c
is one-photon detuning, �p=�ab−�p−�0 is two-photon de-
tuning. For this �-type EIT system, the evolution equations
for both the slowly varying atomic operators and the slowly
varying annihilation operator of quantum probe field â are
given by

�̂ba = − ��1 − i��p + �0���̂ba + igâ��̂bb − �̂aa� + i��̂bc + F̂ba,

�̂bc = − ��0 − i�p��̂bc − igâ�̂ac + i�*�̂ba + F̂bc,

�̂ac = − ��2 + i�0��̂ac − igâ+�̂bc + i�*��̂aa − �̂cc� + F̂ac,

�̂bb = �1�̂aa − igâ�̂ab + igâ+�̂ba + F̂bb,

�̂cc = �2�̂aa − i��̂ac + i�*�̂ca + F̂cc,

� �

�t
+ c

�

�z
�â = ig*N�̂ba, �1�

where the atomic dipole operator at position z in the
rotating frame is defined by locally averaging over a
transverse slice containing many atoms �̂�	�z , t�
= 1

nA�z	zk��ze
i���
/c��z−ct����

�, where n is the atomic density

and A is the cross section area of the light beam. �1 and �2
are the atomic dipole decay rates from the excited state of �a�
to the ground states of �b� and �c�, respectively. �0 is the
dephasing rate for the two ground states of the �-type sys-
tem, g is the coupling constant between atom and probe field,
� is the Rabi frequency of the coupling field, N refers to the

number of atoms per unit volume. The F̂�	’s are �-correlated
Langevin noise operators caused by reservoir noisy fluctua-
tions. The correlation functions can be calculated via the
quantum regression theorem �25,26�


F̂�
�z1,t1�F̂���z2,t2�� =
L

N

D��̂�
�̂��� − D��̂�
��̂��

− �̂�
D��̂������z2 − z1���t2 − t1� .

�2�

Here D��̂�
� is the expression obtained from the Heisenberg-
Langevin equation for �̂�
, but without the Langevin force
term. The Dirac � function in Eq. �2� represents the short
memory of the reservoir of vacuum modes responsible for
the Langevin forces. L is the length of the medium interact-
ing with the lights.

In the following analysis, we study the noise property of
the probe light under conditions of EIT. Making the usual
assumption that the quantum probe field is much less than
the coupling field and assuming that all the atoms are ini-
tially in the ground state of �b�, we can simplify Eq. �1� to the
following by keeping â to the lowest order and � to all
orders,

�̂ba = − ��1 − i��p + �0���̂ba + igâ + i��̂bc + F̂ba,

�̂bc = − ��0 − i�p��̂bc + i�*�̂ba + F̂bc,

� �

�t
+ c

�

�z
�â = ig*N�̂ba. �3�

In order to solve Eq. �3�, we convert the equations into
Fourier form in the frequency domain via

F̂�z,�� =
1

�2
�

−�

+�

F̂�z,t�exp�i�t�dt , �4�

then solving Eq. �3�, the annihilation operator of delayed
light â�z , t� has the Fourier transform of

d

dz
â�z,�� = − ����â�z,�� +

g*N

C
F̂�z,�� , �5�

where

���� =
�g�2N

c
� �0 − i��p + ��

�� − i��p + �0 + ����0 − i��p + ��� + ���2�
−

i�

c
,

F̂�z,�� =
− �F̂bc�z,�� + �� + �p + i�0�F̂ba�z,��

�� − i��p + �0 + �����0 − i��p + ��� + ���2
,

and � is the detection frequency.
Performing formal integration over z to obtain the delayed

output probe beam throughout the EIT medium gives

â�L,�� = e−����Lâ�0,�� +
g*N

c
�

0

L

e−�����L−s�F̂�s,��ds .

�6�

Introducing amplitude and phase quadratures �X̂�z , t� and

Ŷ�z , t�� of probe light, which are defined by

X̂�z,t� = â�z,t� + â+�z,t� ,

Ŷ�z,t� = − i�â�z,t� − â+�z,t�� , �7�

using the definition of the quadrature spectrum


X̂�L,��X̂�L,���� =
2L

c
��� + ���SX�L,�� ,


Ŷ�L,��Ŷ�L,���� =
2L

c
��� + ���SY�L,�� , �8�

the output amplitude noise spectrum of probe light is then
obtained as
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SX�L,����� + ��� = S1��� + S2��� + � �g�2N2

cL
�� � dsds�e−�����+�������L−s�F̂�s,��F̂�s�,���

+� � dsds�e−�����+�*�−�����L−s�F̂�s,��F̂+�s�,− ��� +� � dsds�e−��*�−��+�������L−s�F̂+�s,− ��F̂�s�,���

+� � dsds�e−��*�−��+�*�−�����L−s�F̂+�s,− ��F̂+�s�,− ���� . �9�

The correlation function of F̂�s ,�� can be calculated via the
quantum regression theorem of Eq. �2� when we take �1
=�2=�,


F̂ba�z1,�1�F̂ba
+ �z2,�2�� =

L��z1 − z2����1 + �2�
N

2� ,


F̂bc�z1,�1�F̂bc
+ �z2,�2�� =

L��z1 − z2����1 + �2�
N

2�0,

�10�

substituting Eq. �10� into Eq. �9�, one obtains the normalized
output amplitude spectrum

SX�L,�� = S1��� + S2��� + S3��� �11�

with

S1��� = �SX�0,��/4�„exp�− ����� + ��− ���L�

+ exp�− ��*��� + �*�− ���L�

+ exp�− ����� + �*����L�

+ exp�− ���− �� + �*�− ���L�… ,

S2��� = �SY�0,��/4�„− exp�− ����� + ��− ���L�

− exp�− ��*��� + �*�− ���L�

+ exp�− ����� + �*����L�

+ exp�− ���− �� + �*�− ���L�… ,

S3��� = 1 − exp�− 2 Re ����L� .

The output amplitude noise spectrum in Eq. �11� consists
of three contributions. The first part, S1���, is related to the
amplitude noise spectrum of the input probe beam SX�0,��;
the second part, S2���, is related to the phase noise spectrum
of the input probe beam SY�0,��, which contributes to the
output amplitude noise of probe light due to the phase-to-
amplitude noise conversation when the light pass through a
coherence medium �27,28�. The third part, S3���, arises from
the Langevin atomic noise resulted from the random decay
process of atoms. In general, the phase-to-amplitude conver-
sation noise may add excess noise to the quantum state of
probe light during the quantum storage, except in the case of
resonant EIT, for which the term of S2��� takes the value of

zero; however, our following discussion will show that this
excess noise can be well suppressed by choosing suitable
detuning and detection frequency.

III. THE OUTPUT NOISE OF PROBE BEAM AT ZERO
SPECTRAL FREQUENCY

The spectral component of the probe beam at �=0 for a
3 dB squeezed input beam throughout the system is plotted
in Fig. 2 as a function of the two-photon detuning �p with
�g�2NL /c=25, �0 /�=0, � /�=3.6, �0=0. For a 3 dB
amplitude-squeezed state of light, the normalized spectrum
of the two quadrature components are given as SX�0,0�
=0.5, SY�0,0�=2. For the sake of seeing the noise squeezing
within the EIT window clearly, we also plot the probe ab-
sorption versus �p, i.e., EIT �the thin solid line�, the resonant
EIT happens at �p=0. The thick solid line shows the total
output amplitude noise spectral component SX�L ,0� of probe
beam, the dashed line, dotted line, and dash-dotted line rep-
resent the noise spectral components of S1�0�, S2�0�, and
S3�0�, respectively. Note that SX�L ,0�=1 represents the shot
noise level �SNL� of the output field. It is clear that at the
EIT resonance �i.e., �0=�p=0�, the contribution to the am-
plitude noise from the phase-to-amplitude conversion is al-
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FIG. 2. The output amplitude noise �the left axis� and the probe
absorption �the right axis� vs the probe detuning. The thick solid
line shows the total output amplitude noise SX�L ,�=0� of the probe
light, the dashed, dotted, and dash-dotted lines are the noises of
S1�0�, S2�0�, and S3�0�. The thin solid line is the probe absorption
vs the probe detuning, i.e., EIT. The parameters are �g�2NL /c=25,
�0 /�=0, � /�=3.6, �0=0.
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most zero and the noise of the output probe beam equals that
of input probe, that is, the squeezing of probe beam through-
out the atomic medium can be well maintained only at the
EIT resonance, which is the recovery result discussed earlier
�20,21�. When the probe beam is tuned off the EIT resonance
��p�0, �0=0�, the phase-to-amplitude noise of S2�0� and the
Langevin noise from the atom S3�0� are gradually respon-
sible for the output amplitude noise spectrum of the probe
field. It can be seen in Fig. 2 that although the noise of S1�0�
reduces to zero at a particular detuning, the noise of S2�0�
reaches its maximum or vice versa. The total output noise
�see the thick solid line� at nonzero detuning �near the EIT
resonance� is always larger than that at the resonance mainly
due to the phase-to-amplitude noise conversion. It is obvi-
ously that this phase-to-amplitude noise conversion intro-
duces excess noise to output beam, and it would affect the
output squeezing, so that the bandwidth of squeezing is
much less than that of the EIT window.

In the preceding section we have discussed the noise
spectrum of output probe light throughout an EIT medium
under the relative ideal situation of �0 /�=0, � /�=0. For the
physically realistic scheme, although the ground dephasing
rate ��0� is very small, it still cannot be neglected due to
atomic collisions and atoms drifting out of the interaction
region; and on the other hand, though the best squeezing
occurs at zero detection frequency �� /�=0�, the relaxation
oscillation of the laser at low frequency �29� prevents us
from detecting the squeezing at the zero frequency in the
process of squeezing measurement. Thus it is necessary to
consider the influence of these parameters on the results.

IV. THE OUTPUT NOISE OF PROBE BEAM AT
NONZERO SPECTRAL FREQUENCY

Now we turn our attention to the effects of detection fre-
quency on the probe beam in Fig. 3. To illustrate these ef-
fects, as an example, we still consider the output noise for
3 dB input squeezing. It is noted that the noise profile in Fig.
3 is asymmetrical, the noise of probe light at the probe de-
tuning of �p /��−1 is even less than that at the resonant EIT.

The reason is that, in this case, the atomic noise at the de-
tuning of �p /��−1 is smaller than the noise at the resonant
condition, and it almost reduces to zero �corresponding to the
lowest absorption�. In order to explain the reason clearly, let
us consider the atomic noise term of S3��� in Eq. �11�. For
simplicity, we neglect the contribution from �0 �because of
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FIG. 3. The output amplitude noise for nonzero detection fre-
quency. The parameter values are � /�=1.0, �0 /�=0.01, �g�2NL /c
=25, � /�=3.6.
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FIG. 4. The amplitude noise spectra for different two-photon
detuning. Solid line: �p /�=−1.0; dashed line: �p /�=0. �a�, �b�, and
�c� are the results for the ground dephasing rate of �0 /�=0, �0 /�
=0.01, and �0 /�=0.05, respectively. The other parameters are as in
Fig. 3.
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�0�� ,��, and for the one photon resonance we have �0
=�ac−�c=0, and the atomic noise term, S3���, can be sim-
plified to

S3��� = 1 − exp�−
���p + ��2

����2 − ��p + ���2 + ����p + ���2� .

�12�

Equation �12� tell us that the atomic noise reduces to zero at
�p+�=0, that is to say, the EIT window is shifted to an
off-resonance frequency, �p�−�. Thus in the realistic mea-
surement system with nonzero detection frequency, we can
adjust the two-photon detuning so that almost no atomic
noise is added to the output probe beam.

V. THE NOISE SPECTRA WITH TWO-PHOTON
DETUNING

As discussed above, the two-photon detuning in the EIT
system makes it possible for the quantum state of storage to
be read out with low noise while simultaneously having the
relative higher detection frequency. The dependences of the
output noise on the detection frequency for different two-
photon detuning and ground dephasing rate are plotted in
Figs. 4�a�–4�c�. The noise spectra show that, if we detect the
output probe beam in resonant EIT with the detection fre-
quency of � /�=1.0, the output noise would increase to 0.65
from of the input 0.5 �dashed line in Fig. 4�a��; however, for
the nonresonant situation, the output noise could be lower
than 0.65, see the solid line in Fig. 4�a�, the output amplitude
noise at the spectral frequency, � /�=−�p /�=1.0, reaches its
minimum, and is almost the same as that before the process
of storage. Figures 4�b� and 4�c� show the results for nonzero
ground dephasing rates for �0 /�=0.01 and �0 /�=0.05. It is
obvious that both the dephasing rate �0 and the detection
frequency have negative effects on the maintenance of the

squeezing of the quantum state �dashed lines�, taking a
proper two-photon detuning can minimize the output noise
and consequently optimize the quantum property of output
state of quantum memory.

This result gives an instructive suggestion that in the real
observable scheme of state storage, one might optimize the
quantum behavior of delayed light by choosing a proper two-
photon detuning.

In conclusion, we have investigated the noise spectrum of
amplitude-squeezed input probe light in the EIT medium.
The amplitude noise spectrum of the delayed squeezed light
throughout the EIT medium is determined not only by the
amplitude noise of the input light, but also the phase-to-
amplitude converted noise and the atomic noise. It is shown
that the optimum condition to minimize the quantum noise of
the delayed light in a realistic EIT scheme with a finite de-
tection frequency can be obtained by tuning from the two-
photon resonance.

The EIT medium can slow down and even store the trans-
mitted probe light, which can also be used to implement
quantum phase gates for quantum computing. In order to
obtain the cross-phase modulation for the phase gates, one
needs to shift from the EIT resonance to off two-photon reso-
nance �30,31�. Preserving a quantum state efficiently under
two-photon detuning discussed above has the potential appli-
cation in quantum phase gates in EIT medium. Further study
including the higher order of the probe intensity as discussed
in Ref. �30� is needed.
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