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The frequency conversion of cw continuous variable quantum states via second-order nonlinear optical pro-
cesses is theoretically analyzed. It is shown that wideband frequency conversion of cw continuous variable
quantum states is feasible by sum-frequency generation. For difference-frequency generation, besides as an
optimal-phase-conjugation frequency-conversion process, any one quadrature of the quantum state can be fre-
quency converted through it. Particularly, we analyze the influence of pump field fluctuations on the fidelity of
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the frequency-conversion process for a coherent state input. © 2008 Optical Society of America
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1. INTRODUCTION

In quantum information processing and communication,
quantum interfaces capable of transferring quantum
states from one type of carrier to another are potentially
useful. These include the ability to shift the carrier fre-
quencies of the quantum states to the desired values
while keeping the quantum states unchanged [hereafter,
we will focus on such kind of frequency conversion and
call it quantum frequency conversion (QFC)]. For ex-
ample, future quantum networks will likely require the
ability to freely change between the wavelength of a par-
ticular flying quantum state (e.g., a telecommunication-
wavelength optical field) and a stationary quantum state
(e.g., a trapped atom or ion). Recently, a qubit transfer be-
tween photons of different wavelengths through the pro-
cess of nonlinear upconversion was reported [1,2], and a
polarization-independent frequency upconversion was
also demonstrated [3]. Besides qubit, quantum continu-
ous variables (CV) have emerged as a new tool for devel-
oping novel quantum communication and information-
processing protocols. This extension is stimulated by the
high efficiency in preparing and manipulating the quan-
tum states in the CV regime as well as the uncondition-
alness. Many quantum CV protocols have been proposed
and experimentally realized (for a review see [4]). Huang
et al. have demonstrated QFC with pulsed twin beams of
light [5]. A scheme of QFC of cw CV entangled states was
also proposed [6]. It should be noted that QFC can also be
done by quantum teleportation with a CV frequency non-
degenerate Einstein—Podolsky—Rosen state in principle
[7]. Unfortunately, sufficiently strong entanglement is
necessary to obtain a high fidelity, and furthermore, so-
phisticated Bell measurements and displacement opera-
tions are needed. In this paper, QFC of cw CV quantum
states via second-order nonlinear optical processes is
theoretically analyzed. Particularly, the influence of
vacuum noises and excess amplitude and phase noises of
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the strong pump field was considered.The paper is struc-
tured as follows. In Section 2, we analyze the QFC based
on sum-frequency generation (SFG); in Section 3, the
QFC based on difference-frequency generation (DFG) was
presented; and in Section 4, we summarize and conclude.

2. QFC BASED ON SFG

For a cw nonlinear parametric interaction process, a cav-
ity is usually utilized to improve significantly the conver-
sion efficiency [8]. Consider a SFG process as shown in
Fig. 1; a ring cavity is used to enhanced greatly the circu-
lating pump power (angular frequency wy), and it is single
pass for the signal field (angular frequency ;) and the
upconverted field (angular frequency wg) [3]. Such cavity
design ensures high nonlinear conversion efficiency as
well as the broadband QFC. To analyze the QFC, we
adopt the semiclassical approach [9]. Assume the round-
trip losses (linear and nonlinear losses) for the strong
pump field are small, and therefore the pump field is spa-
tially invariant. The evolution equations for this system
can be given by [9,10]

day(t) ig (- . )
2 =— yay(t) + —J ay(z,t)ay(z,t)dz + \ 2y Ty’
dt 7J,
+\2p5/ 7o, 1)

day(z,t) .
- = lgao(Z,t)az(t), (2)
8a()(‘z’t) .
———=igay(z,t) ay(?), (3)

where «}(z,t) stand for the slow-varying field amplitudes
(j=0 for upconverted, j=1 for the signal, j=2 for the
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Fig. 1. Broadband QFC of cw CV quantum states based on SFG
(DFG).

pump), and they satisfy the relation «;z,?)
= \s"eocnj/ (2hw)E; (E; are actual electric fields). So the
variable |a;(z,t)|* gives the photon flux. a4 is the input
pump field amplitude, and b4 is the vacuum field due to
the linear losses. g=x?[2hwwiwse/ (goc®ningnsg) V2 is the
nonlinear coupling coefficient, where n; is the refractive
index at frequency wj, ¢ is the speed of light in vacuum,
x? is the second-order effective nonlinear susceptibility,
and g is the dielectric constant of vacuum. 7is the cavity
round-trip time of the pump field; ys, us are the input cou-
pling and the intracavity linear loss rates for the pump
field, respectively; and y=y9+ uo is the total loss rate. L is
the length of the nonlinear crystal.

By combining Egs. (2) and (3), The expressions for the
aq(z,t) and ay(z,t) can be derived:

| g ()

|
sin(g|ay(t)|z), (4)

a(z,1) = o} cos(glas(t)[z) + iaf)
as(t)

ap(z,t) =i %(t) sin(g|ay(t)|z) + i cos(g|as(t)z), (5)
|arg(2)]

where ail":al(O,t), ai)”:ao(O,t) are the input signal and
upconverted fields amplitude at the input surface of the
nonlinear crystal, respectively. We assume «f' is in the
vacuum state. When the pump field is treated as a per-
fectly coherent monochromatic field with a stabilized in-
tensity and the complete nonlinear conversion has oc-
curred at the output surface of the nonlinear crystal, i.e.,
glag(t)|L=m/2, Eq. (5) can be rewritten as

ag(L,?) = exp(ig)al’, (6)

where exp(i¢)=iay(t)/|as(t)|. Except for an unimportant
absolute phase, the upconverted field will be in the same
quantum state as the input signal field. Thus, perfect
QFC of a cw CV quantum state is realized. Also, it is a
broadband QFC, which is not limited by the cavity line-
width of the pump field. This is only an ideal situation,
and in practice there are classical and quantum noises in
the pump field [11,12]. Such noises will inevitably de-
grade the fidelity of QFC. Hereafter, starting with Egs.
(1)—(5), we will investigate the QFC of Gaussian states (of
course, QFC of other quantum states can also be investi-
gated based on these five equations). In particular we as-
sume the input signal field is an unknown coherent state
|@) and investigate the effects of pump field noises by
evaluating the fidelity [13]
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F=<a|pout‘a’>= (7)

[(2+Nx)(2+ NY)]1/2 ’
with
Nx=N3¥'-N¥, Ny=N3'-NY¥, (8)

where p,,; is the output state, N;-"”, N;” (j=X,Y) are
quadrature noises of output and input states, respec-
tively.

One can get the expressions of pump field ay(¢) by sub-
stituting Eqgs. (4) and (5) into Eq. (1). For simplicity, we
assume the intensity of signal field is much weaker than
that of the pump field and that they satisfy the relation
|12/ o2 <297, ||/ |as| < 2uq7 (this is usually satisfied
in the practical system). By using this approximation, the
second term on the right side of Eq. (1) can be neglected,
and we have

day(t)

” =— yay(t) + \,'272/7'a§” +\2ug/Ths. (9)

In frequency space, the solution for the pump field is

V2! o (w) + V2 1o/ Tho(w)
ag(w) = Tioty : (10)

To determine the fluctuation of a((L,t), we make use of
the technique of linearization, where the amplitudes of
optical fields are expanded in terms of mean fields and
small fluctuations. Assuming a complete frequency con-
version and neglecting higher order terms, the fluctuation
of the upconverted field can be obtained from Eq. (5):

darg(L,t) = exp(i{ 0)) (i 5a'l* — 56A™), (11)

where Aé”:(ailn) and day(L,t) and 5aei1” are field fluctua-
tions for the output upconverted and input signal with
(Sap(L,t))=0 and (5a")=0. 56 is the phase fluctuation of
pump field with exp(if)=ay(t)/|as(t)| and (56)=0. To as-
sure the same quadrature is being compared in all input
and output fields, we define the quadratures as X,

=exp[—i((0) + 7/2)]ag+exp[i((O)+ 77/2)]0(3, Y%=i(exp[i(( 6)
+7/2)]ag-expl-i((O)+7/2)]ag); X, =ar+ay, Y, =ile,
—ay);  X,,=exp(-i(6)ag+exp(i(O)ay, Y, =i(exp(i(6))ay
—exp(-i(#)ag). From Eq. (11), the fluctuations of two
quadratures of the upconverted field in frequency space
can be given by

8, () = 8Xi (),

8Y () = 8V () + 280(w)AT".  (12)

The noise spectra thus can be calculated as

Ny, (@) = (X, (©) 8X,, (@) = Nxi (@), (13)

Ny, (0) = (8Y 1, (@)8Y,, () = Nyi (@) + 4] 50(w) 56 (w)).

(14)

Here, the noise spectra have been normalized (Nx=Ny
=1 corresponds to quantum noise limit). It is interesting
that amplitude quadrature noise spectrum of upconverted
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field is not sensitive to the noises of both amplitude and
phase quadratures of the pump field, whereas the phase
quadrature noise spectrum of the upconverted field is re-
lated to only the phase noise of the pump field. From the
definition of 6, one can easily obtain J56(w)
= YQZ(w)/(2|A2|), here |Ag|=(ay(t)). Thus the noise spec-
trum is

1
(60() 86" (w)) =

1A, |2<5Y (@) 8Y, (). (15)

By using Eq. (10), the phase quadrature noise spectrum of
the pump field is

(2 ’)/2/T)NYM () + 2uo/ T

TP

where Nyin(w) is phase quadrature noise spectrum of the

(Y o, () 8Y () = , (16

input pumzp field.
By combining Eqs. (8) and (13)—(16), we can obtain the
equivalent input noises

Nx=0,

( |Ai1n2> (272/T)Ny:r;(w) + 2o/ T
v=

17

A, P 4

So the fidelity given by Eq. (7) can be rewritten as
2
F= 172"
|Ai1n‘z (2’}/2/T)NYEZL((J)) + 2uo/T
2
( Aol ) W’ + 7

(18)

It is evident that the existence of phase fluctuations of
pump field (both classical and quantum) will degrade the
fidelity of the QFC, whereas the fidelity is not sensitive to
the amplitude fluctuations.

Figure 2 shows the fidelity of the QFC versus the phase
quadrature noise of the input pump field Ni” for different
normalized frequencies w/2y=0,2,10. In Flg 2, N ym(w)
has been assumed to be independent of frequency, “and
typical experimental parameters have been used with to-
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Fig. 2. The fidelity of the QFC versus the phase quadrature
noise of the input pump field (N¥=10 logNym) for w/2y

=0,2,10. The total cavity loss is 2y7=0.05 and |AD2/|A,)?
=0.001.

Vol. 25, No. 2/February 2008/J. Opt. Soc. Am. B 271

1.0 - —
T e
1 ‘/">_
1 P
, /
0.8 4
‘/
/
= /
8 o064 /
w i
! n_
/ —— N’=0dB
0.4 i ----N;=10dB
1 J
i e N"=30 dB
1
i
024 ;
T T T T T T T
0 5 10 15 20 25 30

Normalized frequency w/2y

Fig. 3. Fidelity of the QFC versus the normalized frequency
/2y for different phase quadrature noise of the input pump
field. The other parameters are the same as in Fig. 2.

tal cavity loss of 2yr=0.05 and |A™[2/|A,/?=0.001. It is
clear from Fig. 2 that the fidelity decreases owing to the
phase quadrature noise, and the effect of phase fluctua-
tions upon fidelity becomes weaker with increasing value
of normalized frequencies. This is because the cavity in
Fig. 1 acts as a spatial mode cleaner [14] as well as an en-
hancement cavity for high frequencies (w>2v), so the
pump noises will be reflected by the cavity.

The fidelity of the QFC versus the normalized fre-
quency /2y for different phase quadrature noises of the
input pump field is shown in Fig. 3. The fidelity of the
QFC is increased with increasing value of frequencies,
such phenomena is also attributed to the noise filtering of
the cavity. It should be noted that when the phase
quadrature noise of the input pump field is not so large,
the curve of the fidelity is fairly flat; this indicates that
our QFC is essentially a broadband one, which is impor-
tant for a universal QFC.

In above analysis, a perfect nonlinear conversion has
been assumed. If the nonlinear conversion is not com-
plete, vacuum field (oz ") will enter the upconverted field,
and the fidelity of the QFC will be degraded. It should be
noted that there exists a tolerance for the noises of the in-
put pump field that does not need to be an ideal coherent
state. To determine the tolerance, |A%"[2/|A5/? is an impor-
tant parameter; the smaller it is, the larger the tolerance
is. For given value of parameter |AY"|?/|A5|?, the tolerance
of input pump field noise can be estimated conveniently
by using Eq. (18).

3. QFC BASED ON DFG

For the QFC based on SFG, the carrier frequency of the
frequency-converted quantum state must be larger than
that of the initial quantum state, whereas it is possible to
decrease the carrier frequency by exploring a DFG pro-
cess. Similar to Eqs. (1)-(3), the evolution equations for
QFC based on DFG can be given by

day(t)
dt

; L
g '
== yao(t) + — f a1(2,t) ag(z,t)dz + 2y Tdly!
-
0

+ 24/ 7Dy, (19)
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r?al(z,t)

= igao(t)a;(z,t), (20)

aaZ(Zyt)

=igay(t)a;(z,t), (21)

where «(t), @1(z,t), and ay(z,t) stand for the slow varying
complex amplitudes of pump, signal, and downconverted
fields, respectively. af," is the input pump field amplitude.
Other parameters have the same definitions with those of
SFG process.

By combining Eqgs. (20) and (21), we have [15]

) C e apt)
ay(z,t) = o cosh(g|ay(t)|z) + iay sinh(g|ay(t)|2),

|ao(2)]
(22)

t) _
|a0(t)| sinh(g|ay(?)]z) + o' cosh(g|ay(t)|z),
0

Cw
as(z,t) =iay"

(23)

where a‘f‘:al(O,t), aé”:ag(O,t) are the input signal and
downconverted fields amplitude at the input surface of
the nonlinear crystal, respectively. We assume oy’ is in
the vacuum state. When the pump field is treated as a
perfectly coherent monochromatic field with a stabilized
intensity and the complete nonlinear conversion is oc-

curred, Eq. (23) can be rewritten as
a(L,t) = exp(i)al +\2ai, (24)

where exp(i¢)=i exp(i ) =iay(t)/|ay(t)|. The corresponding
phase conjugation fidelity for a coherent state input is

F=(a|pyle)=1/2, (25)

where |a") is the phase conjugation state of |a). From Eq.
(25), we cannot realize a perfect phase conjugation QFC
by DFG. Actually, the phase conjugation of an unknown
Gaussian state cannot be realized perfectly by any physi-
cal process, and some noises will inevitably be introduced
by an approximate phase conjugation operation [16]. In
an ideal situation (a perfectly coherent monochromatic
pump field with a stabilized intensity), the DFG can real-
ize an optimal phase conjugation QFC (the lower bound of
added noise is achieved) [16].

The classical and quantum noises in the pump field will
also inevitably degrade the fidelity of phase conjugation
QFC. Under the assumption of weak signal field
|eq|?/ | a2 <2y, |aq|/|ap] <\2u07, by using Eq. (19), the
quadrature noise spectra of the pump field are

(290/T)Nyin(w) + 2/ T
)

NYHO(w) = wz + ’}/2 » (26)
(2 YO/T)NXZ‘(G)) + 20/ T
Ny, (0)= = > : 27)

where Nyi»(w) and Nyin(w) are noise spectra of the input
pump field, ’
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By using the technique of linearization, the fluctuation
of downconverted field can be given by

. Lk = . 5|[10(t)| L
San(L,t) =i exp((O)| 8o +\2In(1 + \J’Z)WAT
0

+188 1”) +\2ain, (28)

where Ag”:(ali"). The noise spectra of two quadratures
can be calculated as

|Ain 2
Ny (@) =Nyn(w) + C?— 3Nx, (@) +2Nxin(w), (29)
¥ ay ‘AO‘ % g
AT
Ny, (@)= Nyn(0) + 72Ny, () + 2N (@), (30
2 ay 0 0 ay

where C=42In(1+42), Ap=(ap). By combining Egs.
(26)—(30), the phase-conjugating fidelity is

F=(a|pyula’) = (2 ND e N (31)
with
A2 (2 '}’O/T)NX’::}(W) +2p0/T
Ny=C? Ay e +2, (32)
|Ai1n|2 (2’)/0/7')Nyt;:)(a)) +2u0/T
+2. (33)

o Ao W+ 9
From Eqs. (81)—(33), it is clear that the phase-
conjugating fidelity is sensitive to the fluctuations of both
amplitude and phase quadratures of the pump field. This
is also shown in Fig. 4.
Although it is impossible to obtain a perfect QFC by us-
ing DFG, we will show that any one quadrature of the in-

Fig. 4. The fidelity (F) of the QFC versus the phase and ampli-

tude quadratures noise of the input pump field (N&X

=10 log Nxin, N}?Y= 10log Nyin) for w/2y=0. The other param-
] @

eters are the same as in Fig. 2.
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put signal field can be transferred by constructing a feed-
back loop. When the complete nonlinear conversion is
occurred, Egs. (22) and (23) can be rewritten as [we as-
sume iag(t)/|ay(t)]=1]

ay(L,t) = 20" + ol | (34)

an(L,t) = o +\2ail. (35)

The corresponding equations in the quadratures (de-
fined as X¥'=a exp(ip)+a” exp(-i¢)) are then given by

X9 = 2000 4 xint-9), (36)
(Xl \ Gfl O{z
X\ = X700 + X7 (37)

It is useful to write Eq. (37) as
X\ = - X000 12X (38)

First, one quadrature of the output signal field Xﬁ:“’) is
detected; the measured photocurrent is i=X(a“P). Thenlit is
used to modulate the downconverted field X{a“’) by electro-
optic modulators, and the modulated field )%{Q‘Z)M can be
written as

XM = - X000 42X + gi, (39)

where g describes a gain for the transformation from clas-
sical photon current to complex field amplitude [7]. For

g=—\s“§, XE;I ¢ is eliminated in Eq. (39) and we have
XM _ xin(m-¢) (40)
a @ ’

From Eq. (40), it is evident that quadrature XZLI(""’) can
be transferred by constructing a feedback loop, except for
a rotation of quadrature direction.

4. CONCLUSION

The QFC of cw CV quantum states via second-order non-
linear optical processes is theoretically analyzed in this
paper. It is shown that wideband frequency conversion of
the cw CV quantum state is available by SFG and DFG.
Although one cannot obtain a perfect QFC by using DFG,
it is feasible that any one (and only one) quadrature of the
quantum state can be perfectly transferred by construct-
ing a feedback loop. This feature has some interesting ap-
plications; for instance, it can be applied to any situation
where the useful quantum information is carried by only
one quadrature of the optical field. When the classical and
quantum fluctuations are considered and assuming a co-
herent state input, it is shown that only the phase noise of
the pump field will degrade the fidelity of the QFC for
SFG, whereas the fidelity of QFC by using DFG is sensi-
tive to both the amplitude and the phase noises of the
pump field. Even if there are large amplitude and phase
noises in the pump field, the QFC can be robust against
them, given that the input signal field is fairly weak com-
pared with the pump field. It is worth noting that the op-
timal phase conjugation frequency conversion by using
DFG is no better than what can be achieved classically,
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for instance, by simultaneously measuring the two
quadratures of a coherent state at the carrier frequency of
w; and then preparing a coherent state whose phase
quadrature has a flipped sign at the carrier frequency of
wy. However, it is generally difficult to prepare a quantum
state even if we have all the information about it.
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