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The local complementation rule is applied for continuous-variable �CV� graph states in the paper, which is
an elementary graph transformation rule and successive application of which generates the orbit of any graph
states. The corresponding local Gaussian transformations of local complementation for four-mode unweighted
graph states were found, which do not mirror the form of the local Clifford unitary of qubit exactly. This work
is an important step to characterize the local Gaussian equivalence classes of CV graph states.
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Entanglement lies at the heart of quantum mechanics and
plays a crucial role in quantum information processing. Re-
cently, special types of multipartite entangled states, the so-
called graph states �1,2�, have moved into the center of in-
terest. A graph quantum state is described by a mathematical
graph, i.e., a set of vertices connected by edges. A vertex
represents a physical system, e.g., a qubit �two-dimensional
Hilbert space�, qudit �d-dimensional Hilbert space�, or con-
tinuous variables �CV� �continuous Hilbert space�. An edge
between two vertices represents the physical interaction be-
tween the corresponding systems. An interesting feature is
that many entanglement properties of graph states are closely
related to their underlying graphs. They not only provide an
efficient model to study multiparticle entanglement �1�, but
also find applications in quantum error correction �3,4�, mul-
tiparty quantum communication �5�, and, most prominently,
serve as the initial resource in one-way quantum computa-
tion �6�. Considerable efforts have been stepped toward gen-
erating and characterizing cluster state with linear optics ex-
perimentally �7–10�. The principle feasibility of a one-way
quantum computing model has been experimentally demon-
strated through photon cluster state successfully �7,10�.

Most of the concepts of quantum information and compu-
tation have been initially developed for discrete quantum
variables, in particular two-level or spin-1

2 quantum variables
�qubits�. In parallel, quantum variables with a continuous
spectrum, such as the position and momentum of a particle
or amplitude and phase quadrature of an electromagnetic
field, in informational or computational processes have at-
tracted a lot of interest and appears to yield very promising
perspectives concerning both experimental realizations and
general theoretical insights �11,12�, due to relative simplicity
and high efficiency in the generation, manipulation, and de-
tection of the CV state. Although up to six-qubit single-
photon cluster states have been created via postselection us-
ing nonlinear and linear optics, the deterministic,
unconditional realization of optical cluster states would be
based on continuous variables. CV cluster and graph states
have been proposed �13�, which can be generated by
squeezed state and linear optics �14,15�, and demonstrated
experimentally for the four-mode cluster state �16�. The one-

way CV quantum computation was also proposed with the
CV cluster state �17�. Moreover, the protocol of CV anyonic
statistics implemented with CV graph states is proposed �18�.

One of the interesting issues on entanglement is how to
define the equivalence of two entangled states. The transfor-
mations of qubit graph states under local Clifford operations
were studied by Hein �1� and Van den Nest �19�. They trans-
late the action of local Clifford operations on qubit graph
states into transformations on their associated graphs, that is,
to derive transformations rules called the local complement
rule, stated in purely graph theoretical terms, which com-
pletely characterize the evolution of graph states under local
Clifford operations. The corresponding local Clifford unitary
is a single and simple form. The successive application of
this rule suffices to generate the complete orbit of any qubit
graph state under local Clifford operations. In this paper, the
local complement rule for the CV four-mode unweighted
graph state is applied and the corresponding local Clifford
transformations �also called local Gaussian transformation
for CV� for the four-mode graph state were found. The local
Gaussian equivalence classes of CV four-mode unweighted
graph states can be obtained in this way. It was shown that
the corresponding local Gaussian unitary cannot exactly mir-
ror that for the qubit, which is not a single form compared
with the qubit. This result shows the complexity of CV quan-
tum systems and stimulates the research on the local Gauss-
ian equivalence of CV graph states. Although only focusing
on the CV four-mode unweighted graph states, this work
makes an important step in the direction of addressing the
general question “What are the graph transformation rules
that describe local unitary equivalence of any CV graph
states?”

The CV operations are reviewed first that follow the stan-
dard prescription given in Ref. �20�. The Pauli X and Z op-
erators of the qubit are generalized to the Weyl-Heisenberg
group, which is the group of phase-space displacements. For
CVs, this is a Lie group with generators x̂= �â+ â†� /�2
�quadrature-amplitude or position� and p̂=−i�â− â†� /�2
�quadrature-phase or momentum� of the electromagnetic
field as the CV system. These operators satisfy the canonical
commutation relation �x̂ , p̂�= i �with �=1�. In analogy to the
qubit Pauli operators, the single mode Pauli operators are
defined as X�s�=exp�−isp̂� and Z�t�=exp�itx̂� with s , t�R.
The Pauli operator X�s� is a position-translation operator,*jzhang74@sxu.edu.cn; jzhang74@yahoo.com
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which acts on the computational basis of position eigenstates
��q� ;q�R	 as X�s� �q�= �q+s�, whereas Z is a momentum-
translation operator, which acts on the momentum eigen-
states as Z�t� � p�= �p+ t�. These operators are noncommuta-
tive and obey the identity X�s�Z�t�=e−istZ�t�X�s�. The Pauli
operators for one mode can be used to construct a set of Pauli
operators �Xi�si�, Zi�ti�; i=1, . . . ,n	 for n-mode systems. This
set generates the Pauli group C1. The Clifford group C2 is the
normalizer of the Pauli group, whose transformations, acting
by conjugating, preserve the Pauli group C1; i.e., a gate U is
in the Clifford group if URU−1�C1 for every R�C1. The
clifford group C2 for CV is shown �20� to be the �semidirect�
product of the Pauli group and linear symplectic group of all
one-mode and two-mode squeezing transformations. Trans-
formation between the position and momentum basis is
given by the Fourier transform operator F=exp�i�� /4��x̂2

+ p̂2��, with F�q�x= �q�p. The action FRF−1 of the Fourier
transform on the Pauli operators is

F:X�s� → Z�s� , Z�t� → X�− t� . �1�

This is the generalization of the Hadamard gate for qubits.
The phase gate P���=exp�i�� /2�x̂2� with ��R is a squeez-
ing operation for CV and the action on the Pauli operators is

P���:X�s� → e−is2�/2Z�s��X�s� , Z�t� → Z�t� , �2�

in analogy to the phase gate of the qubit �21�. The
controlled-Z operation CZ is generalized to controlled-
Z�GCZ�. This gate GCZ=exp�ix̂1 � x̂2� provides the basic
interaction for two-mode 1 and 2, and describes the
quantum nondemolition �QND� interaction. This set
�X�s� ,F , P��� ,GCZ;s ,��R	 generates the Clifford group.
Transformations in the Clifford group do not form a univer-
sal set of gates for CV quantum computation. However, Clif-
ford group transformation �Gaussian transformations� to-
gether with any higher-order nonlinear transformation �non-
Gaussian transformation� acting on a single mode form a
universal set of gates �20�. The local Gaussian group only
was concerned here, which can be obtained by repeated ap-
plication of Fourier and phase gates. In the following, an-
other type of the phase gate will be used PX���=FP���F−1

=exp�i�� /2�p̂2� and the action on the Pauli operators is

PX���:X�s� → X�s� , Z�t� → e−it2�/2X�− t��Z�t� , �3�

where PX���†= PX���−1= PX�−��.
A graph quantum state is described by a mathematical

graph G= �V ,E�, i.e., a finite set of n vertices V connected by
a set of edges E �22�. An �a ,c	 path is an order list of verti-
ces a=a1 ,a2 , . . . ,an−1 ,an=c, such that for all i, ai and ai+1
are adjacent. A connected graph is a graph that has an �a ,c	
path for any two a ,c�V. Otherwise it is referred to as dis-
connected. The neighborhood Na�V is defined as the set of
vertices b for which �a ,b	�E. When a vertex a is deleted in
a graph G, together with all edges incident with a, one ob-
tains a new graph, denoted by G−a. For a subset of vertices
U�V of a graph G= �V ,E� let us denote with G−U the
graph that is obtained from G by deleting the set U of verti-
ces and all edges which are incident with an element of U.
Similarly, a subgraph G�C� of a graph G= �V ,E�, where

C�V, is obtained by deleting all vertices and the incident
edges that are not contained in C. The preparation procedure
of CV graph states �13� can exactly mirror that for qubit
graph states only using the Clifford operations: first, prepare
each mode �or graph vertex� in a phase-squeezed state, ap-
proximating a zero-phase eigenstate �analog of Pauli-X
eigenstates�, then, apply a QND interaction �GCZ gate� to
each pair of modes �j ,k� linked by an edge in the graph. All
GCZ gates commute. Thus the resulting CV graph state be-
comes, in the limit of infinite squeezing, ga= �p̂a−
b�Na

x̂b�
→0, where the modes a�V correspond to the vertices of the
graph of n modes, while the modes b�Na are the nearest
neighbors of mode a. This relation is as a simultaneous zero
eigenstate of the position-momentum linear combination op-
erators. The stabilizers Ga���=exp�−i�ga�=Xa����b�Na

Zb���
with ��R for CV graph states are analogous to n indepen-
dent stabilizers Ga=Xa�b�Na

Zb for qubit graph states. Note
that the CV graph states that are discussed here are un-
weighted since the QND interactions all have the same
strength. For the CV weighted graph states generated by the
different QND interaction strength, the stabilizers become
Ga���=Xa����b�Na

Zb��ab��, where �ab is the interaction
strength between modes a and b. The CV weighted graph
states are more complex, which is not considered in this
paper.

The action of the local complement rule can be described
as follows: letting G= �V ,E� be a graph and a�V be a ver-
tex, the local complement of G for a, denoted by �a�G�, is
obtained by complementing the subgraph of G generated by
the neighborhood Na of a and leaving the rest of the graph
unchanged. The successive application of this rule suffices to
generate the complete orbit of any graph. Here, the corre-
sponding local Gaussian unitary for the CV four-mode graph
state were examined. The corresponding four-mode graph
state ��a�G�� by local complement of a graph G at some
vertex a�V is given by a local Gaussian unitary operation

��a�G�� = U�a
�G� , �4�

where U�a
is the local Gaussian operation. A form of the

local Gaussian unitary comprising two types of phase gate is
defined

ULGa
= PXa�1� �

b�Na

Pb�− 1� , �5�

which mirrors the form of qubit local Clifford operation for
local complementation. Figure 1 depicts connected four-
mode graphs by such a successive application of the local
complement rule. The four independent stabilizers of the first
graph state �G�1�� are given by

G1
�1���� = X1���Z2��� , G2

�1���� = X2���Z1���Z3��� ,

G3
�1���� = X3���Z2���Z4��� , G4

�1���� = X4���Z3��� . �6�

with Gi
�1���� �G�1��= �G�1�� in the limit of infinite squeezing,

where i=1, . . . ,4. Applying the local Gaussian unitary ULG3
to the vertex 3, We can compute the four independent stabi-
lizers of the resulting graph state �G�2�� by Eqs. �2�–�5�, for
example, calculating G2

�2����,
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�G�2�� = ��3�G�1��� = ULG3
G2

�1�����G�1��

= ULG3
G2

�1����ULG3

−1 ULG3
�G�1��

= �ei�2/2Z2�− ��X2����Z1���

��e−i�2/2X3�− ��Z3����ULG3
�G�1��

= X2���Z1���Z3���ULG3
�Z2�− ��X3�− ����G�1��

= X2���Z1���Z3���ULG3
�Z2�− ��X3�− ���G3

�1�����G�1��

= X2���Z1���Z3���Z4�����3�G�1��� = G2
�2�����G�2�� �7�

to obtain

G1
�2���� = X1���Z2��� ,

G2
�2���� = X2���Z1���Z3���Z4��� ,

G3
�2���� = X3���Z2���Z4��� ,

G4
�2���� = X4���Z2���Z3��� , �8�

which exactly correspond to the stabilizers of graph no. 2
state in Fig. 1. The complete orbit of the first graph can be
obtained by applying the local complement rule repeatedly to
the vertices and the corresponding local Gaussian unitary is
shown in the following forms:

no. 1 →
ULG3

no. 2 →
ULG3

2 F1
2ULG2

†

no. 3 →
ULG3

†

no. 4 →
ULG1

no. 5

→
ULG2

2 F1
2ULG3

†

no. 6 →
ULG1

†

no. 7 →
ULG3

no. 8 →
ULG4

†

no. 9 →
ULG1

no. 10

→
ULG2

†

no. 11.

Here the complete orbit means the local complement rule is
applied on the graph until exhausting all possibilities. Notice
the difference in the Gaussian operations of 2→3 and 5
→6. In the qubit case, these would have been of identical
form. This shows the added richness of CV graph states over
their qubit counterparts. Note that Hein et al. �1� classify the
equivalence of the graph states by considering the local
complementation and additional graph isomorphisms, which
corresponds to the permutations of the vertices. Figure 2
shows another set of graphs, which are not equivalent to any
graph in the equivalence class represented in Fig. 1 only
considering the local complementation. However, they be-
long to the same equivalence class when considering both
local Gaussian unitary and graph isomorphisms. The corre-
sponding local Gaussian unitary in Fig. 2 is shown in the
following forms:

no. 1 →
ULG1

no. 2 →
ULG3

2 F1
2ULG2

†

no. 3 →
ULG1

†

no. 4 →
ULG2

no. 5

→
ULG2

2 F3
2ULG1

†

no. 6 →
ULG4

2 F2
2ULG3

†

no. 7 →
ULG4

†

no. 8 →
ULG3

no. 9

→
ULG1

†

no. 10; no. 7 →
ULG2

†

no. 11.

The set of graphs in Fig. 3, usually called GHZ
�Greenberger-Horne-Zeilinger� entangled states, is not
equivalent with Figs. 1 and 2 under local Gaussian transfor-
mation and graph isomorphisms. The local Gaussian unitary
is applied to four-mode graph states in Fig. 3, which is writ-
ten above the arrows of the following diagram:

no. 1 →
ULG1

†

no. 2 →
ULG1

no. 1 →
ULG2

†

no. 3 →
ULG2

no. 1 →
ULG3

†

no. 4 →
ULG3

no. 1

→
ULG4

†

no. 5.
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FIG. 1. The connected four-vertex graphs for a successive ap-
plication of the local complementation. The rule is successively
applied to the vertex, which is the circle in the figure.
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FIG. 2. The set of four-vertex graphs is equivalent to Fig. 1
under local Gaussian transformation and graph isomorphisms.
Graph no. 7, which is repeated and placed in the dash-line box
behind graph no. 10, is used for generating graph no. 11 directly.
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Figure 4 lists the graphs with up to four vertices that are not
equivalent under local Gaussian transformation and graph
isomorphisms.

In summary, the local complement rule was extended for
CV graph states and the corresponding local Gaussian trans-
formations of four-mode unweighted graph states were
given. Thus the local Gaussian equivalence classes of CV
four-mode unweighted graph states can be obtained. It was
shown that the corresponding local Clifford unitary cannot
exactly mirror that for the qubit and demonstrate the com-
plexity of CV quantum systems. It is worth remarking that
whether the local complementation for any CV graph states
can be implemented completely by the local Gaussian trans-
formations and the general form of the corresponding local
Gaussian unitary can be found still need to be further inves-
tigated. This work not only contributes to a deeper and more

complete understanding of CV multipartite entanglement,
but also stimulates the research on CV graph states theoreti-
cally and experimentally.
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FIG. 3. The set of four-vertex graphs is not equivalent to Figs. 1
and 2 under local Gaussian transformation and graph isomorphisms.
Graph no. 1, which is placed in the dash-line box, is used repeatedly
by the local complementation.
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FIG. 4. The connected graphs with up to four vertices are not
equivalent under local Gaussian transformation and graph
isomorphisms.
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