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The concrete schemes to realize three types of basic quantum logical gates using linear quadripartite cluster
states of optical continuous variables are proposed. The influences of noises and finite squeezing on the
computation precision are analyzed in terms of the fidelity of propagated quantum information through the
continuous variable cluster states. The proposed schemes provide direct references for the design of experi-
mental systems implementing quantum computation with the cluster entanglement of amplitude and phase
quadratures of light.
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I. INTRODUCTION

Quantum computers �QCs� promise efficient processing
of certain computational tasks that are believed to be intrac-
table with classical computer technology. Most of the con-
cepts of quantum information and computation have been
generalized in continuous variables �CVs� �1� after they were
initially developed for discrete variables �DVs� �2�. A univer-
sal DV QC can perform any desired unitary transformation
over discrete quantum variables by local operations, which
are implemented on sequences of unitary quantum logic
gates. Being different from the widely used quantum circuit
model of QC �3�, a novel model of quantum computation
based on a highly entangled cluster state was proposed by
Raussendorf and Briegel �4�, in which the computation is
completed only through single-qubit projective measure-
ments. Because of the essential role of measurement, the
cluster-based QC is irreversible; thus it was named the one-
way QC �5�. The feasibility of one-way quantum computing
has been experimentally demonstrated in single-photon re-
gime with four-qubit cluster states �6–8�.

In 1999, Lloyd and Braunstein �9� provided necessary and
sufficient conditions for constructing a universal CV QC and
showed that QC over quadratures of the electromagnetic
field might be realized using simple linear optical elements
such as beam splitters and phase shifters, together with
squeezers of light and nonlinear devices. As a new type of
multipartite entanglement, the conception of qubit-based
cluster state was extended to CV and it was claimed that
such states may be applied in quantum network communica-
tion but cannot be used in universal QC over CV because of
their Gaussian character �10�. Successively, a universal QC
model with CV cluster states was proposed by Menicucci et
al. �11� as a generalization of DV QC cluster-state model. It
was pointed out in Ref. �11� that the universal quantum com-
putation based on CV cluster states can be performed only by
adding to the toolbox �squeezed light, linear optics, and ho-
modyne detection �HD�� any single-mode non-Gaussian
measurement, while the initial cluster state itself remains
Gaussian. In the proposed optical implementation of univer-

sal QC model using CV cluster states, squeezed-light sources
serve as the nodes of the cluster; thus not only computation
can be performed deterministically but also the preparation
of CV cluster states can be done unconditionally �11,12�.
Although the optical modes of the electromagnetic field pro-
vide a suitably experimental test bed for demonstrating the
general principles of cluster-based QC, there is no any ex-
perimental result to be presented so far. We consider that the
absence of the concrete design on the experimental systems
is one of the reasons limited the progress of CV QC experi-
mental research. Quantum logical gates are the most basic
computing devices in QC which perform elementary quan-
tum operations. To prompt the experimental study on QC
with CV cluster states of light, we propose the schemes to
realize the single-mode and multimode Gaussian quantum
logical operations using linear quadripartite cluster states of
electromagnetic field, which have been experimentally pre-
pared �13,14�. In Ref. �12�, van Loock illustrated the prin-
ciples of one-way QC using Gaussian CV cluster states with
simple examples. Here, we will discuss concrete schemes for
experimentally implementing quantum logical gates in one-
way CV QC. The influences of the quantum noises and the
finite squeezing of light on the computation precision will be
analyzed in terms of fidelity of propagated quantum informa-
tion through CV cluster states. Our analysis shows that finite
squeezing reduces the precision of quantum logical opera-
tions. In practice, the ability of optical CV QC depends cru-
cially on the squeezing degree of light used to prepare CV
cluster states.

The paper is organized as follows: we simply describe the
experimentally generating method of the quadripartite linear
CV cluster states via the linear optical transformation of a
pair of two-mode squeezed states of light produced from two
nondegenerate optical amplifiers �NOPAs� in Sec. II. Then
we introduce the schemes to realize the phase-space dis-
placement transformation, the single-mode squeezing opera-
tion, and the controlled-X operation using the cluster states in
Secs. III–V, respectively. At last a brief conclusion is given
in Sec. VI.

II. PREPARATION OF QUADRIPARTITE CV CLUSTER
STATES

The cluster state is a class of multipartite quantum en-
tangled states and is classified in graph states. Originally, the*Corresponding author; changde@sxu.edu.cn
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term “cluster state” was introduced by Briegel and Raussen-
dorf �15� to refer to the case where the graph G is a two-
dimensional square lattice states and they showed that the
state can be used as a substrate for quantum computation.
Generally, graph quantum states are the multipartite en-
tangled states that correspond to a certain mathematical
graph G, i.e., a set of vertices connected by edges, where the
vertices of the graph take the role of quantum systems and
edges represent the physical interaction between the corre-
sponding systems �16,17�. CV clusterlike states proposed by
Zhang and Braunstein �10� are a kind of CV Gaussian mul-
tipartite entangled states and the difference between CV clus-
terlike and Greenberger-Horne-Zeilinger �GHZ�-type states
has been discussed in Ref. �10�. It has been pointed out that
CV N-partite clusterlike states and GHZ-type states are not
equivalent for N�3, such as they have different persistence
of entanglement and the criteria of quantum inseparability
satisfied by them are also not the same �10,13�. CV N-mode
cluster state is a type of N-mode Gaussian states whose cer-
tain quadratures have perfect correlations in the limit of in-

finite squeezing, i.e., Ŷa−�b�Na
X̂b→0�a=1, . . . ,N�, where

Ya and Xb are quadrature phase and amplitude operators of
optical modes a and b, respectively, Na are the neighboring
modes of a. The ideal CV cluster state is a simultaneous zero
eigenstate of the quadrature combinations. Recently, it has
been explicitly showed in Ref. �17� that there are different
types of four-vertex graph states and all four-mode CV
cluster-state graphs correspond either to a four-mode GHZ
entangled state or to a linear CV cluster state up to local
Gaussian transformation and graph isomorphism. The differ-
ence and relationship between a variety of CV multipartite
entangled states mirror the complexity of CV quantum sys-
tems. Although CV cluster states can be built deterministi-
cally, it will be impossible to create perfect CV cluster states
due to the finite degree of squeezing obtainable in laborato-
ries. The quantum entanglement of an experimentally gener-
ated cluster state should be verified by the sufficient condi-
tion for fully inseparability �18�.

The imperfect CV four-mode cluster state of optical field
has been experimentally prepared with the squeezed states of
light and the linear optical transformation �13,14�. The sche-
matic diagram for the experimental generation of the four-
mode linear CV cluster states, which will be used in follow-
ing schemes for quantum logical gates, is shown in Fig. 1. As
that detailedly described in Ref. �13�, two phase-quadrature
squeezed states �a1

s , a4
s� and two amplitude-quadrature

squeezed states �a2
s , a3

s� are simultaneously produced from a
pair of NOPAs �NOPA1 and NOPA2�, each of which consists
of a type-II �2 nonlinear optical crystal and an optical reso-
nator �19�. The quadrature amplitudes �Xai� and phases �Yai�
of the four squeezed modes ai

s �i=1,2 ,3 ,4� equal to �20–22�

Xa1�4� = e+rXa1�4�
�0� , Ya1�4� = e−rYa1�4�

�0� ,

Xa2�3� = e−rXa2�3�
�0� , Ya2�3� = e+rYa2�3�

�0� , �1�

where Xai
�0� and Yai

�0� stand for the amplitude and the phase
quadratures of the vacuum states �ai

�0� , i=1,2 ,3 ,4� injected
into NOPAs. The shot noise of a vacuum mode is normalized

to 1. For simplification and without losing generality, we
have assumed that the squeezing parameter of the four
squeezed states is equal. The value of r can be taken from
zero to infinite; r=0 and r=� correspond to no squeezing
and perfect squeezing, respectively. The pump laser is a
frequency-doubled cw laser, the output harmonic wave of
which is used for the pump fields of the two NOPAs and the
subharmonic wave serves as the injected signals �a01, a02,
a03, and a04� of the NOPAs as well as the local oscillators
�LOs� in the homodyne detections �see Figs. 2 and 6�. The
beam splitters used in this system are chosen to completely
eliminate all antisqueezing components �14�. We take 1:4
beam splitter for BS1, and 50% beam splitters for BS2 and
BS3. At first interfering modes a2

s and a3
s on BS1 with the

phase difference of � /2 to produce two output modes a5 and
a6, and then combining modes a1

s and a5 on BS2 with the
phase difference of 0 and combining modes a4

s and a6 on BS3
with the phase difference of � /2, the final four output modes
bi �i=1,2 ,3 ,4� are in a linear cluster state �10,13,14�.

Based on Eq. �1�, the combinations of the quadrature
components �Xbi, Ybi, i=1,2 ,3 ,4� of the four submodes in
the cluster state with the squeezed noises can be expressed
by the squeezing parameter r of the original squeezed states
�10,13,14�,

Yb1 − Yb2 = �2e−rYa1
�0�,

Xb1 + Xb2 + Xb3 =
�10

2
e−rXa2

�0� −
�2

2
e−rYa4

�0�,

− Yb2 + Yb3 + Yb4 = −
�10

2
e−rXa3

�0� +
�2

2
e−rYa1

�0�,

Xb3 − Xb4 = − �2e−rYa4
�0�. �2�

It has been theoretically �10� and experimentally �13,14�
demonstrated that if the correlation variances of the ampli-
tude quadratures �Xi� and the phase quadratures �Yi� of the
four modes bi satisfy the following inequalities, the four

FIG. 1. �Color online� Principle schematic for CV quadripartite
linear cluster-state generation.
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modes are in the quadripartite entangled linear cluster state
with the full inseparability �18�,

��2�Xb1 + Xb2 + Xb3�� + ��2�Yb1 − Yb2�� � 4,

��2�Xb3 − Xb4�� + ��2�− Yb2 + Yb3 + Yb4�� � 4,

��2�Xb1 + Xb2 + Xb3�� + ��2�− Yb2 + Yb3 + Yb4�� � 4. �3�

When all correlation combinations in the left-hand sides of
these inequalities are smaller than the normalized shot noise
limit �SNL� of total four modes in the right-hand sides, the
four optical modes b1	b4 are in a cluster state with full
quantum inseparability �10,13,14�. Substituting Eq. �2� into
the inequalities �Eq. �3��, we can see that if the squeezing
parameter r is larger than a certain value, these inequalities
will be met. The better squeezing �large r� corresponds to a
better cluster state with higher quantum correlations of the
quadrature combinations.

III. SINGLE-MODE EVOLUTION: PHASE-SPACE
DISPLACEMENT OPERATION

In CV regime, the Pauli X̂ and Ẑ operators are generalized
to the Weyl-Heisenberg group, which is a Lie group with
generators q̂ and p̂. The operators satisfy the canonical com-
mutation relation �q̂ , p̂�= i �with �=1�. Then the �x and �z
are generalized to the finite phase-space translation opera-

tors, X̂�s�=e−isp̂ and Ẑ�s�=eisq̂ with s�R �11,23�. As dis-

cussed in Ref. �11�, the Ẑ�s�=eisq̂ gate is implemented by
measuring p̂ and subtracting s from the result, where s is the
desired displacement.

The essence of cluster-state computation can be under-
stood by considering a sequence of elementary teleportation
circuits, in which the quantum information is transmitted

through the cluster and potentially manipulated during each
elementary step �3,4�. In CV cluster-state quantum computa-
tion, the change in an initial quantum state during its propa-
gation through the cluster depends on the choice of the mea-
surement basis in each elementary step. As illustrated in
Refs. �11,12�, the choice of the measurement basis corre-
sponds to measurement D̂+P̂D̂, where D̂ is an arbitrary op-
erator diagonal in the computational basis �i.e., of the form
exp�if�q̂���. Thus, the Z��s�=eisq̂ gate is implemented by sim-
ply measuring p̂ and subtracting s from the result. The cor-
responding displacements will appear in the output state
which can be corrected at the end. In experiments, the cor-
rection may conveniently be implemented with the amplitude
and phase modulators.

In DV one-way computer, the known modification can be
accounted for by adjusting the measurement basis for the
final readout. But for a given finite size cluster, the output
qubit may be the input qubit of subsequent circuit, so it must
not be measured. To test the operation result, the correction
to the modification resulting from the measurement should
be made on the output optic mode. Thus in the scheme of
DV one-way computing, the amplitude modulator �AM� and
phase modulator �PM� are used for the active feed forward
�see Ref. �7��. For the same reason, the use of AM and PM is
also necessary in the CV scheme. The modulators are used to
correct the corresponding displacements in the output state
resulting from the measurement of the cluster state.

The experimental setup to realize the phase-space dis-
placement operation is shown in Fig. 2. Using the prepared
quadripartite cluster states, we can choose arbitrarily two
submodes, b1 and b4, for example, to be the input and output
modes, respectively. In DV regime �4�, any desired input
state can be prepared by the other circuit preceding the
proper circuit for computation; hence no input information
needs to be written to the qubits before they are entangled.
For the ideal case of quantum computation with perfect CV
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FIG. 2. �Color online� The ex-
perimental scheme to realize
phase-space displacement opera-
tion using quadripartite linear
cluster state. PM is a phase modu-
lator; AM is a amplitude modula-
tor; and LO is local oscillator.
s0 and s1 are the values subtracted
from the measurement results.
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cluster state which is prepared by coupling perfect squeezed
states, the perfect squeezed states are the eigenstates of a
quadrature component, one of which may play the role of the
input state. However, in experiments the produced cluster
states are not able to be perfect and thus it is difficult to
figure out an exact expression of the original squeezed state,
which serves as the input state, from an imperfect cluster.
For simplification and pedagogical reasons, in the discussion
on the CV logical operation, we use the same method with
Refs. �11,12� where a cluster state is attached to a certain
input state, which can be imaged as a part of another cluster
state used in the preceding step during the online computa-
tion.

The input state ain of the logical gate is combined with the
mode b1 at a 50:50 beam splitter with the phase difference of
0. In Heisenberg picture, the input state is an arbitrary Gauss-
ian state and can be expressed as ain=Xin+ iY in, where Xin
and Y in are the amplitude and phase quadrature of ain, respec-
tively.

In Fig. 2, the modes c1 and c2 with the amplitude quadra-
tures Xc1, Xc2 and the phase quadratures Yc1, Yc2 are two
output modes from a 50% beam splitter, on which mode ain
and mode b1 are coupled with the phase difference of zero.
The amplitude quadratures �Xj� and the phase quadratures
�Y j� �j=c1 ,c2 ,b2 ,b3 ,b4� of modes c1, c2, b2, b3, and b4 are
expressed by

Xc1 = 
 1
�5

Xa2 −
1

2�5
Ya3 +

1

2
Xa1� +

1
�2

Xin,

Yc1 = 
 1
�5

Ya2 +
1

2�5
Xa3 +

1

2
Ya1� +

1
�2

Y in,

Xc2 = 
 1
�5

Xa2 −
1

2�5
Ya3 +

1

2
Xa1� −

1
�2

Xin,

Yc2 = 
 1
�5

Ya2 +
1

2�5
Xa3 +

1

2
Ya1� −

1
�2

Y in,

Xb2 =
2

�10
Xa2 −

1
�10

Ya3 −
1
�2

Xa1,

Yb2 =
2

�10
Ya2 +

1
�10

Xa3 −
1
�2

Ya1,

Xb3 =
1

�10
Xa2 +

2
�10

Ya3 −
1
�2

Ya4,

Yb3 =
1

�10
Ya2 −

2
�10

Xa3 +
1
�2

Xa4,

Xb4 =
1

�10
Xa2 +

2
�10

Ya3 +
1
�2

Ya4, �4�

Yb4 =
1

�10
Ya2 −

2
�10

Xa3 −
1
�2

Xa4,

where Xai and Yai �i=1,2 ,3 ,4� are the amplitude and the
phase quadratures of the initial squeezed states ai

s expressed
in Eq. �1�. At first, the amplitude and phase quadratures Xc1,
Yc2, Xb2, and Yb3 are measured by the homodyne detectors
HDo �o=1,2 ,3 ,4�, respectively. The photocurrent of Xc1
�Yc2� measured by HD1 �HD2� is displaced in an amount s0
�s1�, which corresponds to the desired displaced amount s
=�2s0 ��2s1�. The sum of the photocurrent of the displaced
Xc1 �Yc2� and the photocurrent of Xb2 �Yb3� measured by HD3
�HD4� is used to modulate the mode b4 via an amplitude
�phase� modulator AM �PM�. The modulated mode b4 is the
resultant output mode aout, the amplitude and phase quadra-
tures of which are expressed by

Xout = Xb4 + g0�Xc1 + s0� + g2Xb2

= 
 1
�10

Xa2 +
2

�10
Ya3 +

1
�2

Ya4�
+ g0�
 1

�5
Xa2 −

1

2�5
Ya3 +

1

2
Xa1� +

1
�2

Xin + s0

+ g2
 2

�10
Xa2 −

1
�10

Ya3 −
1
�2

Xa1�
= 
 1

�10
+

g0

�5
+

2g2

�10
�Xa2 + 
 2

�10
−

g0

2�5
−

g2

�10
�Ya3

+
1
�2

Ya4 + 
g0

2
−

g2

�2
�Xa1 +

g0

�2
Xin + g0s0, �5�

Yout = Yb4 + g1�Yc2 − s1� + g3Yb3

= 
 1
�10

Ya2 −
2

�10
Xa3 −

1
�2

Xa4�
+ g1�
 1

�5
Ya2 +

1

2�5
Xa3 +

1

2
Ya1� −

1
�2

Y in − s1

+ g3
 1

�10
Ya2 −

2
�10

Xa3 +
1
�2

Xa4�
= 
 1

�10
+

g1

�5
+

g3

�10
�Ya2 − 
 2

�10
−

g1

2�5
+

2g3

�10
�Xa3

+
g1

2
Ya1 + 
−

1
�2

+
g3

�2
�Xa4 −

g1

�2
Y in − g1s0, �6�

where, gi �i=0,1 ,2 ,3� are the gain factors of the correspond-
ing photocurrents and we take g0=�2, g1=−�2 to ensure the
coefficients of Xin and Y in in the output mode are 1. Substi-
tuting g0, g1 and Eq. �1� into Eqs. �5� and �6�, we obtain

Xout = 
 3
�10

+
2g2

�10
�Xa2 + 
 1

�10
−

g2

�10
�Ya3

+
1
�2

Ya4 + 
 1
�2

−
g2

�2
�Xa1 + Xin + �2s0, �7�
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Yout = 
−
1

�10
+

g3

�10
�Ya2 − 
 3

�10
+

2g3

�10
�Xa3 −

1
�2

Ya1

+ 
−
1
�2

+
g3

�2
�Xa4 + Y in + �2s1. �8�

The calculated fluctuation variances �x
2 and �y

2 of Xout and
Yout are

�x
2 = 
 3

�10
+

2g2

�10
�2

e−2r + 
 1
�10

−
g2

�10
�2

e2r +
1

2
e−2r

+ 
 1
�2

−
g2

�2
�2

e2r + V�Xin� , �9�

�y
2 = 
−

1
�10

+
g3

�10
�2

e2r + 
 3
�10

+
2g3

�10
�2

e−2r +
1

2
e−2r

+ 
−
1
�2

+
g3

�2
�2

e2r + V�Y in� . �10�

Calculating the minimum values of �x and �y in terms of
g2 and g3, we obtain the optimum gain factors

g2
opt = g3

opt =
3�e2r − e−2r�
2e−2r + 3e2r . �11�

The minimum variance equals

�x,min
2 =

e−2r + 9e2r

2 + 3e4r + V�Xin� , �12�

�y,min
2 =

e−2r + 9e2r

2 + 3e4r + V�Y in� . �13�

From Eqs. �7� and �8�, we can easily prove

�Xout� = �Xin� + �2s0, �Yout� = �Y in� + �2s1. �14�

Obviously, the average values of the amplitude and the phase
quadratures of the input state have been displaced in the
phase space desired amounts s=�2s0 and s=�2s1, respec-
tively.

According to the Rayleigh criterion in optics, when the
center of the Airy disk for the first object occurs at the first
minimum of the Airy disk of the second one, we say that the
two objects can be barely resolved �24�. For a Gaussian wave
packet, it can be calculated based on the Rayleigh criterion
that if taking �x��y�=2�x and �x��y�=3�x to be the radius
of Airy disk �the first minimum�, the resolving precision will
reach 95% and 99%, respectively �24�.

Thus we consider when

�2s0 � 3�x = 3� e−2r + 9e2r

2 + 3e4r + V�Xin�
1/2

, �15�

�2s1 � 3�y = 3� e−2r + 9e2r

2 + 3e4r + V�Y in�
1/2

, �16�

the displacement in x and y directions can be distinguished.

We define 3
�2

�x and 3
�2

�y to be the minimum of the displace-
ment limited by the quantum noises in optical modes for a
given r and noises of the input state �V�Xin� and V�Y in��.
Only when the displacement s0�s1�=s /�2 is larger than the
minimum, the displacement in the phase-space is distin-
guishable. The minimum distinguishable displacement s0

min

�s1
min� stands for the reachable precision of a logical opera-

tion system.
For a general example, we assume that the input state is a

squeezed state with a squeezing parameter of r� �r�=0 cor-
responds to a coherent state�. The dependences of the distin-
guishable displacements of the amplitude quadrature �s0� and
the phase quadrature �s1� upon r and r� are shown in Fig. 3.
We can see that when r and r� increase, s0

min and s1
min de-

crease; however the influence of r is lager than that of r�. It
means that for performing a precise phase-space displace-
ment operation on an input quantum state, we have to pre-
pare a cluster state with high squeezing parameter at first.

When s0=0 and s1=0, the system performs an operation
corresponding to an identity gate, in which the information
propagates down a quantum wire to complete a simplest
single-mode evolution. In fact, to propagate the information
down a quantum wire, the basic method is teleportation
�25–27�. Just like that in one-way DV QC scheme, a combi-
nation of successive one-qubit teleportation plays a key role
�28,29�, CV teleportation is also the elementary method for
performing CV quantum computation with cluster states. The
identity operation is equivalent to the teleportation of the
input state ain to the output state aout under the help of cluster
entanglement. The flexibility of the system is that we can
also extract the output state either from b2 or b3 instead of
from b4.

If using the unity gain �g=1�, the fidelity for the input
Gaussian states is simply given by F=2 /��1+�x

2��1+�y
2�

�26�. Substituting Eqs. �12� and �13� into the fidelity formula,
the dependence of F on the squeezing parameter r in the
system is shown in Fig. 4.
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FIG. 3. �Color online� Distinguishable displacement s0
min �s1

min�
vs the initial squeezing parameter r of the cluster state and the
squeeze parameter r� of the input state.
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For perfect initial squeezing of r→�, the fidelity F→1, it
means that in the ideal case the quantum information is suc-
cessfully propagated down the quantum wire. Generally, for
the classical case without squeezing �r→0�, the best fidelity
F should be equal to 0.5 �26�, which just is the result in Fig.
4.

IV. SINGLE-MODE SQUEEZING OPERATION

A single-mode squeezer is an important primitive for per-
forming Gaussian transformation. As pointed out in Refs.
�11,12�, in a squeezer there is the operator of quadratic form,
D=exp�itq̂2�, which can be performed via a given cluster
state solely by doing suitable homodyne measurements,
where t stands for the squeezing parameter of the D
=exp�itq̂2� operation. The experimental setup of the single-
mode squeezer is the same as Fig. 2. However in the squeez-
ing operation, a linear combination of position and momen-
tum should be detected with the HDs, which correspond to
the measurement of rotated quadratures �12�.

Coupling the input state ain to a submode b1 of the quad-
ripartite cluster state and adjusting the phase differences be-
tween the local oscillator and the signal field in HD1, HD2,
HD3, and HD4 to 	, � /2, 0, and � /2, respectively, the values
of Yc1 sin 	+Xc1 cos 	, Yc2, Xb2, and Yb3 can be measured,
respectively. Then, those measured photocurrents are used
for displacing the amplitude and the phase quadratures of the
mode b4. The quadratures of the output mode are expressed
by

Xout = Xb4 + �2
1

cos 	
�cos 	Xc1 + sin 	Yc1� + Xb2

− �2 tan 	Yc2 = 
 1
�10

Xa2 +
2

�10
Ya3 +

1
�2

Ya4�
+ �2��
 1

�5
Xa2 −

1

2�5
Ya3 +

1

2
Xa1� +

Xin

�2



+ tan 	�
 1
�5

Ya2 +
1

2�5
Xa3 +

1

2
Ya1� +

1
�2

Y in
�

+ 
 2
�10

Xa2 −
1

�10
Ya3 −

1
�2

Xa1�
− �2 tan 	�
 1

�5
Ya2 +

1

2�5
Xa3 +

1

2
Ya1� −

1
�2

Y in

=�5

2
Xa2 +

1
�2

Ya4 + Xin + 2 tan 	Y in, �17�

Yout = Yb4 − �2Yc2 + Yb3 = 
 1
�10

Ya2 −
2

�10
Xa3 −

1
�2

Xa4�
− �2�
 1

�5
Ya2 +

1

2�5
Xa3 +

1

2
Ya1� −

1
�2

Y in

+ 
 1

�10
Ya2 −

2
�10

Xa3 +
1
�2

Xa4�
= −�5

2
Xa3 −

1
�2

Ya1 + Y in. �18�

In Eq. �17�, the rescaling factor is cos 	, and the squeezing
parameter t=−tan 	. For experiments, the squeezing of the
output mode aout can be checked with another homodyne
detection HD5. If the phase difference between the LO and
aout in HD5 is 
, we have

Yout sin 
 + Xout cos 


= �−�5

2
Xa3 −

1
�2

Ya1 + Y in
sin 


+ ��5

2
Xa2 +

1
�2

Ya4 + Xin − 2 tan 	Y in
cos 


= �−�5

2
Xa3 −

1
�2

Ya1
sin 
 + ��5

2
Xa2 +

1
�2

Ya4

�cos 
 + cos 
Xin + �2 tan 	 cos 
 + sin 
�Y in,

�19�

V�Yout sin 
 + Xout cos 
� = 3e−2r + cos2 
 + �2 tan 	 cos 


+ sin 
�2. �20�

From Eq. �20�, we can see that the fluctuation variances
may be smaller than the normalized SNL for appropriate 	
and 
. The dependences of the variances V in Eq. �20� on the
detection phase 
 of the output mode are drawn for different
	 and a given r=2 in Fig. 5. Obviously, the noise ellipse of
the output squeezed mode becomes more narrow and the
lowest variance becomes smaller �squeezing increases� when
	 increases, which corresponds to the result in Ref. �11�.
However, if tan 	=0, we have V�Yout sin 
+Xout cos 
�
=3e−2r+1. In this case the variance V does not depend on 
;
thus there is no squeezing to be generated whatever cluster is
applied. In Fig. 6 the functions of V vs 
 for different r of
the initial cluster state and a given tan 	=2 are presented. It
is pointed out that only when r of the cluster state is larger
than a threshold �r=0.55 in this example� squeezing of the
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FIG. 4. The fidelity F vs the initial squeezing parameter r.
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output mode exists, i.e., V is lower than the normalized SNL,
where r=0.6 and r=1.15 correspond to the squeezing of 5.2
and 10 dB, respectively, which have been experimentally re-
alized �30–33�. The maximum squeezing direction 
 de-
pends on 	 only and does not on r. The dependence of 
opt

for the minimum Vmin on 	 is expressed in Eq. �21�,

tan 2
opt = �tan 	�−1. �21�

The minimum Vmin for a given r equals

V�Yout cos 
opt + Xout sin 
opt� = 3e−2r + �tan 
opt�−2.

�22�

V. CONTROLLED-X OPERATION

After the Pauli X̂ and Ẑ operators are generalized to the
finite phase-space translation operators, the controlled-NOT

�CNOT� and controlled-PHASE �CPHASE� are naturally gener-

alized to controlled- X̂ �ĈX� and controlled-Ẑ �ĈZ�, respec-
tively, which affect a phase-space displacement on the target
by an amount determined by the position eigenvalue of the

control state: ĈX=exp�−iq̂ � p̂� and ĈZ=exp�iq̂ � q̂�, where
the order of the system is control � target �11�. In this sec-
tion, we will discuss the realization of controlled-X opera-
tion.

Figure 7 is the proposed experimental scheme for realiz-
ing CV controlled-X operation using linear quadripartite
cluster state. The control signal ac and the target signal at are
expressed by

ac = Xc + iYc, �23�
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FIG. 5. �Color online� Fluctuation variances of the output mode
V�Yout sin 
+Xout cos 
� vs phase difference 
 of the HD5 for the
different detection phase 	. The dashed line is the normalized SNL
and taking r=2.
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at = Xt + iYt, �24�

where Xc�t� and Yc�t� are the amplitude and the phase quadra-
ture of ac�t�, �Xc�t��=sc�t�, and sc and st stand for the position
displacements of the control and the target signals in the
phase-space related the zero point, respectively. The input
control signal ac and the target signal at are coupled, respec-
tively, to the submodes b3 and b2 of the cluster state at a
50:50 beam splitter with the phase difference of 0. The
quadratures of the coupled state equal to

Xb1 =
2

�10
Xa2 −

1
�10

Ya3 +
1
�2

Xa1,

Yb1 =
2

�10
Ya2 +

1
�10

Xa3 +
1
�2

Ya1,

Xt1 =
1
�2


 2
�10

Xa2 −
1

�10
Ya3 −

1
�2

Xa1 + Xt� ,

Yt1 =
1
�2


 2
�10

Ya2 +
1

�10
Xa3 −

1
�2

Ya1 + Yt� ,

Xt2 =
1
�2


 2
�10

Xa2 −
1

�10
Ya3 −

1
�2

Xa1 − Xt� ,

Yt2 =
1
�2


 2
�10

Ya2 +
1

�10
Xa3 −

1
�2

Ya1 − Yt� ,

Xc1 =
1
�2


 1
�10

Xa2 +
2

�10
Ya3 −

1
�2

Ya4 − Xc� ,

Yc1 =
1
�2


 1
�10

Ya2 −
2

�10
Xa3 +

1
�2

Xa4 − Yc� ,

Xc2 =
1
�2


 1
�10

Xa2 +
2

�10
Ya3 −

1
�2

Ya4 + Xc� ,

Yc2 =
1
�2


 1
�10

Ya2 −
2

�10
Xa3 +

1
�2

Xa4 + Yc� ,

Xb4 =
1

�10
Xa2 +

2
�10

Ya3 +
1
�2

Ya4, �25�

Yb4 =
1

�10
Ya2 −

2
�10

Xa3 −
1
�2

Xa4.

Measuring Xt1, Yt2, Xc1, and Yc2 and feeding forward the
measured photocurrents to mode b1 and b4, respectively, the
quadratures of the output mode become

Xt
out = Xb1 + �2Xt1 + �2Xc1 = 
 2

�10
Xa2 −

1
�10

Ya3 +
1
�2

Xa1�
+ �2

1
�2


 2
�10

Xa2 −
1

�10
Ya3 −

1
�2

Xa1 + Xt�
+ �2

1
�2


 1
�10

Xa2 +
2

�10
Ya3 −

1
�2

Ya4 − Xc�
=�5

2
Xa2 −�1

2
Ya4 + Xt − Xc,

Yt
out = Yb1 − �2Yt2 =

2
�10

Ya2 +
1

�10
Xa3 +

1
�2

Ya1

− �2
1
�2


 2
�10

Ya2 +
1

�10
Xa3 −

1
�2

Ya1 − Yt�
= �2Ya1 + Yt, �26�

Xc
out = Xb4 − �2Xc1 = 
 1

�10
Xa2 +

2
�10

Ya3 +
1
�2

Ya4�
− �2

1
�2


 1
�10

Xa2 +
2

�10
Ya3 −

1
�2

Ya4 − Xc�
= �2Ya4 + Xc,

TABLE I. The average values and the variances of the amplitude and the phase quadratures for the input
and the output states.

Control Target

Input �Xc�=sc �x=V�Xc� �Xt�=st �x=V�Xt�
signal �Yc�=0 �y =V�Yc� �Yt�=0 �y =V�Yt�

�Xc
out�=sc �Xt

out�=st−sc

Output signal �Yc
out�=0 �Yt

out�=0

�x=2e−2r+V�Xc� →
r→�

V�Xc� �x=3e−2r+V�Xc�+V�Xt� →
r→�

V�Xc�+V�Xt�

�y =3e−2r+ �V�Yc�+V�Yt�� →
r→�

�V�Yc�+V�Yt�� �x=2e−2r+V�Yt� →
r→�

V�Yt�
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Yc
out = Yb4 − �2Yt2 + �2Yc2 =

1
�10

Ya2 −
2

�10
Xa3 −

1
�2

Xa4

− �2
1
�2


 2
�10

Ya2 +
1

�10
Xa3 −

1
�2

Ya1 − Yt�
+ �2

1
�2


 1
�10

Ya2 −
2

�10
Xa3 +

1
�2

Xa4 + Yc� =

−�5

2
Xa3 +�1

2
Ya1 + Yt + Yc. �27�

The average values and the variances of the amplitude
and the phase quadratures for the input and the output states
are listed in Table I. We can see that the phase quadrature of
the output target signal has been displaced under the control
of the control signal sc. It means that the controlled-X opera-
tion has been implemented.

For clearly exhibiting the effect of finite squeezing of the
cluster state on the feature of output states, the Wigner func-
tions of the input �output� control and target signals are
shown in Fig. 8, where we have assumed that both input
control and target signals are the amplitude-squeezed states
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of light and sc=1 and st=2 �normalized to the shot noise
limit�. Obviously, the amplitude quadratures are displaced in
an amount along the direction of x axis under the action of
the control signal �from 2 to 1�. Since the finite squeezing of
the cluster state, some noises are added in the process, and
thus the Wigner functions of the output states are expanded
at the direction of x axis. It means that the imperfect cluster
will result in the squeezing decrease in input state. The in-
fluence will reduce when the squeezing parameter r of the
cluster state increases �comparing r=1 and r=3�.

VI. CONCLUSIONS

For conclusion, following the theoretical suggestions on
CV QC in Refs. �11,12�, we designed the concrete experi-
mental systems for implementing the phase-space displace-
ment transformation, squeezing, and controlled-X operation
based on the linear quadripartite cluster state of electromag-
netic field. In the proposed schemes only linear optics, ho-
modyne detections, and classical feed forwards are required
and the cluster state can be prepared offline. The influences
of finite squeezing of cluster state on the precisions of the

logical operations are analyzed. Although a nonlinear ele-
ment such as any single-mode non-Gaussian measurement is
needed for demonstrating universal CV QC, the realization
of the proposed logical operations is the first step for univer-
sal quantum computation. The calculations and discussions
in this paper provide direct references for the design of the
experimental systems implementing CV logical gates. The
linear CV quadripartite cluster states have been experimen-
tally obtained �13,14�; thus the proposed schemes for the CV
logical operations are accessible with the present experimen-
tal technology. In the presented paper, we only analyzed the
Gaussian optical modes and the analyses based on the quan-
tum variances cannot be applied in the non-Gaussian states
of the optical field. The feasible scheme for the quantum
computation using non-Gaussian optical states still keeps be-
ing an open question.
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