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We demonstrate the capability of continuous variable Gaussian states to communicate multipartite

quantum information. A quantum teamwork protocol is presented according to which an arbitrary possibly

entangled multimode state can be faithfully teleported between two teams each comprising many co-

operative users. We prove that N-mode Gaussian weighted graph states exist for arbitrary N that enable

unconditional quantum teamwork implementations for any arrangement of the teams. These perfect

continuous variable maximally multipartite entangled resources are typical among pure Gaussian states

and are unaffected by the entanglement frustration occurring in multiqubit states.
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Introduction.—Information technology is hectically
evolving towards the quantum scale. The discovery that
entanglement, apart from being a fascinating founding
feature of quantum theory, can be employed as a resource
for novel or enhanced processing, manipulation, and dis-
tribution of information [1] has spurred enormous theoreti-
cal and experimental progress. An appealing perspective
for future mainstream quantum information technology is
to be implemented over a ‘‘quantum internet’’ [2] archi-
tected as a network where light buses and atomic storage
units are interfaced to enable secure information transfer
and quantum computation. The main routes towards the
quantum internet are relying on either discrete variable
interfaces between single photons and single trapped
atoms, which are physical representations of qubits, or on
continuous variable (CV) interfaces between light modes
and mesoscopic atomic ensembles, which are physical
realizations of bosonic modes. Historically, most of the
concepts of quantum information and computation have
been first developed in the qubit regime and, more recently,
generalized to a CV scenario where very promising per-
spectives have been acknowledged concerning both gen-
eral theoretical insights and experimental realizations [3],
due to the relative simplicity and high efficiency in the
generation, manipulation, and detection of special classes
of CV states, Gaussian states [4]. However, the two sce-
narios for quantum technological implementations have
mostly progressed in parallel, with no truly radical instance
in which the performance of one approach is demonstrated
to be unique and unmatched by the other.

Here we introduce a general multipartite communication
primitive—the ‘‘quantum teamwork’’—that cannot be im-
plemented perfectly with N-qubit resources beyond the
threshold N � 8. On the contrary, we identify families of
Gaussian multipartite CV entangled states of an arbitrary
number of modes which remarkably enable unconditional
quantum teamwork implementations over quantum net-
works. These CV resources, belonging to the class of

Gaussian weighted graph states [5–7], are shown to be
typical in the space of pure Gaussian states and are ideally
unaffected by the kind of entanglement frustration that
arises in low-dimensional many-body systems [8]. Our
results demonstrate that at a fundamental level CV entan-
glement offers enhanced perspectives for quantum
technology.
Quantum teamwork.—A quantum police department is

investigating malicious activities over the quantum internet
[2]. A briefing is issued to N agents in the form of an

entangled N-party quantum state %ð0Þ
N distributed by the

central station, possibly supplemented with classically
broadcast information. The chief publicly orders the agents
to split in two teams of K and N � K members, respec-
tively, where we shall assume K � N � K here and in the
following. The parties carry their share of the entangled
resource, and the two teams independently proceed in the
investigation. They gather progress encoded in generally
entangled states j�i of up to K subsystems, supplied by
independent informants. Suppose team A wishes to com-
municate some undisclosed information to team B. To do
so, the members of each team must act cooperatively on
their respective blocks of the original entangled system, in

such a way that the distributed resource %ð0Þ
N is converted

into a perfect K-user quantum teleportation channel, i.e., a
tensor product of K maximally entangled states of two
subsystems, each belonging to one of the teams. One
team can then transfer with perfect fidelity the K-party
state j�i, containing the investigation progress, to the other
team which may process or store it for further inspection.
The teams then meet up for a new briefing, another en-

tangled resource %ð1Þ
N is redistributed, and possibly a differ-

ent configuration of the team squads is ordered for the
subsequent stage of the investigation. And the process
continues for n steps until the case is closed.
We have just introduced an instance of quantum ‘‘team-

work.’’ It is a very powerful and practical primitive that
generalizes conventional quantum teleportation [9,10] and
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multipartite teleportation networks [11] and promises to be
of many uses in quantum technology implementations.
Crucial for the feasibility of quantum teamwork are the

multipartite entangled resources %ðjÞ
N distributed to the par-

ties at each briefing. Above, we assumed different resour-
ces be needed at each step j, adapted on the team configu-
ration. This would, however, require some control at the
station level, i.e., over the initialization of the protocol,
posing a drawback to its versatility. We raise then an in-
triguing question: Do universal resources exist that enable
the unconditional realization of quantum teamwork for any
arrangement of the two teams? In mathematical terms, do
N-partite quantum states %N exist which are locally equiva-
lent, with respect to any KjðN � KÞ bipartition, to the
tensor product of exactly K maximally entangled states,
plus N � 2K uncorrelated single-party states?

Perfect maximally multipartite entangled states for qu-
bits.—Addressing such a question is quite challenging,
mainly because the structural aspects of multipartite en-
tanglement are still largely unknown [12]. If one restricts
the search for %N to states of N qubits, however, one has in
general a negative answer. Consider, e.g., N ¼ 4: While
protocols for teleporting an arbitrary state of two qubits via
either two Bell pairs [13] or a genuinely four-qubit multi-
partite entangled state [14] exist, they cannot work for unit
fidelity for all of the three possible splittings of four parties
into two two-party teams. The most suitable qubit resource
states to implement quantum teamwork would be the per-
fect ‘‘maximally multipartite entangled states’’ (MMES)
recently studied by Facchi et al. [8], which are those
N-qubit states j�i that can be written in Schmidt form as

j�iAB ¼ P
2K

j¼1

ffiffiffiffiffiffiffiffiffiffiffi
1=2K

p j�jiAj�jiB across any AjB partition

where the block A is made of K qubits. They have the
defining property of exhibiting the maximum allowed bi-
partite entanglement for all possible splittings. However, it
has been proven that qubit perfect MMES do not exist for
N ¼ 4 and for all N � 8, indicating the strong presence of
an entanglement frustration as complexity increases [8].
Faithful teamwork instances can thus be achieved only
among 5 or 6 parties (the case N ¼ 7 is still unsettled
[8]) when each party is allotted a single qubit.

Perfect maximally multipartite entangled states for con-
tinuous variables.—In a CV scenario, one could transliter-
ate the notion of MMES in a weak sense, by looking for
states whose bipartite entanglements are simultaneously
diverging across all bipartitions. It is easy to find CV states
which meet these requirements, the most prominent ex-
amples being the GHZ-type (GHZ stands for Greenberger-
Horne-Zeilinger) permutation-invariant Gaussian states
[11] of N modes, in the limit of infinite local squeezing.
However, for any bipartition these states are locally equiva-
lent to a single maximally entangled state [Einstein-
Podolsky-Rosen (EPR) pair] and as such enable only a
very limiting case of quantum teamwork, where K ¼ 1.
This special instance of teleporting arbitrary single-mode
states from any sender to any receiver, the latter acting

cooperatively with N � 2 assisting parties, was already
introduced as a ‘‘quantum teleportation network’’ [11]
and has been demonstrated experimentally for N ¼ 3 [15].
In this Letter, we go beyond these limitations by iden-

tifying N-mode CV Gaussian resources which are locally
equivalent to a maximal number of EPR pairs for any
partition, thus enabling unconditional quantum teamwork,
and properly embodying the stronger notion of ‘‘perfect’’
CV MMES. Precisely, we define a perfect CV MMES as a
(not necessarily Gaussian) N-mode state such that, with
respect to any AjB partition where the block A is made ofK
modes, it can be transformed by local unitaries into the
tensor product of exactly K EPR pairs (and N � 2K un-
correlated single-mode states). Clearly, such a state has
infinite energy and stands as an idealized limit; therefore,
the notion of perfect CVMMES has to be understood in the
sense of a family of states, depending on a parameter (e.g.,
a local squeezing degree), which converge asymptotically
to the ideal perfect CV MMES when the parameter is very
large. For any finite value of the parameter, one has an
imperfect approximation of the perfect CVMMES, but this
approximation can be arbitrarily precise.
We shall look for perfect CV MMES within the family

of Gaussian weighted graph states of a N-mode CV sys-
tem. Gaussian states, up to local displacements, are com-
pletely specified by the covariance matrix � of the second
canonical moments [4]. A weighted graph Gaussian state
j�i is a pure N-mode Gaussian state whose covariance
matrix is defined in terms of a local squeezing degree r > 0
and associated to a weighted N-vertex graph G with ad-
jacency matrix � via a canonical prescription [5–7], as
detailed in the supplementary material [16]. For any split-
ting of the modes into a K-mode block owned by party A
and a (N � K)-mode block owned by party B (recall that
K � N � K), any pure N-mode Gaussian state j�iAB is
equivalent, up to local (with respect to the bipartition)
Gaussian unitary operations, to the tensor product of M �
K entangled two-mode squeezed states jc ðriÞii2A;iþK2B

and additional N � 2M uncorrelated single-mode vacua
[17]. The two-mode squeezed states jc ðrÞi ¼
P

n�
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
jn; ni (with � ¼ tanhr) are prototypical

CV states which reproduce infinitely entangled EPR pairs
in the limit r ! 1. The numberM of entangled two-mode
squeezed states in the normal form of a pure N-mode
Gaussian state for a given partition is given by the sym-
plectic rank of its reduced K-mode covariance matrix [18].
In the case of weighted graph Gaussian states, by writing

the adjacency matrix � in block form with respect to the
AjB partition

� ¼ �A �AB

�T
AB �B

� �

;

one hasMðj�iABÞ ¼ rankð�ABÞ [5,19]. Moreover, by con-
struction, for these states, the two-mode squeezed pairs
appearing in the normal form all simultaneously converge
to EPR pairs for a diverging r. Thus we obtain the follow-
ing powerful and simple criterion: A pure N-mode
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Gaussian weighted graph state with adjacency matrix � is
a perfect CV MMES in the limit of infinite local squeezing
if and only if all of the K � ðN � KÞ off-diagonal block
submatrices �AB have matrix rank K.

How quantum teamwork works.—We are ready to pro-
vide examples of Gaussian resources useful for quantum
teamwork. We first observe that the direct analogues of
perfect qubit MMES for N ¼ 5; 6 [8], described by un-
weighted, partially connected graphs, are perfect CV
MMES, as one would expect. For N ¼ 4, no perfect qubit
MMES exist [8]. However, we disclosed several instances
of four-mode CV perfect MMES. One such instance is
provided by (the infinite-squeezing limit of) a Gaussian

state j�ð4Þi with irreducible three-party correlations which
has been recently introduced [20,21] and experimentally
demonstrated [22]. It is defined by the action of a beam
splitter on two beams each taken from a two-mode

squeezed state j�ð4Þi ¼ UðtÞ23½jc ðrÞi12 � jc ðrÞi34�, where
UðtÞ is a beam splitter transformation with transmittivity t.
This state is locally equivalent to the four-mode ring
weighted CV graph state depicted in Fig. 1(a).

For the resource j�ð4Þi it is instructive to illustrate the
explicit steps needed for the teleportation of arbitrary two-
mode states from any two parties paired as team A to the
remaining two parties of team B. If A ¼ ð1; 4Þ, the only
local operation required to obtain 2 two-mode squeezed
entangled pairs is obviously an inverse beam splitter with
transmittivity t on the B modes. If A ¼ ð1; 2Þ, both teams
have to locally mix their respective modes at a 50:50 beam
splitter and further apply local squeezing operations, with
squeezing s on modes 1 and 4 and 1=s on modes 2 and 3

[s ¼ ½ðcosh2r� ffiffi
t

p
sinh2rÞ=ðcosh2r� ffiffi

t
p

sinh2rÞ�1=4], to
reproduce a dual entangled channel. If A ¼ ð1; 3Þ, the
same steps are required but with the following modifica-
tions: t ! 1� t and 2 $ 4. Suppose now a random ar-
rangement is chosen for the two teams, and team A wishes
to teleport an arbitrary two-mode (entangled) state, e.g., a
two-mode squeezed state jc ðzÞiin, to team B. After the
local operations described above, each input mode is in-
dependently teleported according to the conventional
Braunstein-Kimble scheme [10,23] using the correspond-

ing two-mode squeezed entangled pair [24], and finally
team B obtains the two-mode state %out. The fidelity F ¼
inhc ðzÞj%outjc ðzÞiin between input and output reads

F ¼ expð2rAÞ
2ðcosh2rA þ cosh2zÞ ; (1)

depending on both the input squeezing z and the effective
squeezing rA of the two entangled pairs in the normal form

of j�ð4Þi relative to the partition AjB. We have rð1;4Þ ¼ r,

rð1;2Þ ¼ 1
2 arccosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh22r� tsinh22r

p
, and rð1;3Þ ¼

1
2 arccosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh22r� ð1� tÞsinh22rp

. For any finite z, 0<

t < 1, and r ! 1, in which limit the entangled channels
reproduce exactly EPR pairs, the fidelity converges to unity
for all bipartitions [see Fig. 1(b)]. This is an unconditional
quantum teamwork realization for N ¼ 4, experimentally
feasible with current technology [15,22,23].
More examples of perfect CVMMES are provided in the

supplementary material [16].
Typicality of continuous variable perfect maximally mul-

tipartite entangled states.—We may now attempt an esti-
mate of the volume occupied by perfect CV MMES in the
space of pure Gaussian states for arbitrary N. The reduced

symplectic eigenvalues �ðAÞ
j � 1 (j ¼ 1; . . . ; K) of the

K-mode covariance matrix �ðNÞ
A of a generic N-mode

pure-state covariance matrix �N , corresponding to any
block A, are a continuous analytic function of the real
elements of the covariance matrix [4]. It follows that the
set of states which certainly fail to be perfect MMES,

characterized by one or more �ðAÞ
j ¼ 1, is of null measure.

If we specialize to weighted graph Gaussian states, where

by construction if all �ðAÞ
j > 1, then they all diverge for

infinite local squeezing, we can conclude that perfect CV
MMES families are henceforth typical [25] in the space of
(weighted graph) pure Gaussian states, in the sense that
randomly picked (weighted graph) pure Gaussian states for
an arbitrary number of modes are expected to reproduce
perfect MMES for diverging local squeezing. We tested the
typicality argument by a numerical construction of pure
N-mode Gaussian states described by (generally complete)
graphs associated to a symmetric adjacency matrix� with
null principal diagonal and random off-diagonal integer
weights ��ab 2 ½0; N�. Remarkably, we found instances
of perfect CV MMES at the first run for each N (we tested
up toN ¼ 100). An example forN ¼ 20 is presented in the
supplementary material [16]. As mentioned, notable ex-
ceptions lying in the null-measure set of nonperfect MMES
are the CV GHZ-type states [11], associated to fully con-
nected unweighted graphs. As soon as the symmetry is
broken and randomness is plugged in the interaction
weights, perfect maximal multipartite entanglement blos-
soms in CV Gaussian states, which are thus unaffected by
the entanglement frustration featuring in many-body low-
dimensional systems [8].
Applications and remarks on practical implementa-

tions.—Perfect CV MMES stand as promising resources
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FIG. 1 (color online). (a) Weighted graph definition of four-
mode perfect CV MMES locally equivalent to the state j�ð4Þi.
(b) Fidelity of the quantum teamwork for teleporting input two-
mode squeezed states with squeezing z ¼ 2, plotted versus the
resource squeezing r for the three possible arrangements of
sender and receiver teams (at t ¼ 1=3).
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for operating the quantum internet [2]. All Gaussian
weighted graph states, including perfect CV MMES, are
efficiently engineerable with off-line squeezers and linear
optics [26]. Let us also recall that several classes of cluster
states, belonging to the family of (weighted) graph
Gaussian states [6,7], are proven universal resources for
CV one-way quantum computation [27]. Given the typi-
cality of perfect CV MMES, we may expect that suitable
graph structures exist for arbitrarily largeN such to achieve
both the universality for quantum computation [28] and the
CV MMES property. By construction, perfect CV MMES
enable the creation of EPR pairs between any two modes
and have unbounded entanglement width scaling linearly
withN, thus fulfilling the necessary conditions for efficient
universality [28]. Remarkably, perfect CV MMES auto-
matically enable faithful ‘‘disk operations’’ such as cut and
paste of large sectors of stored data. Here the input data are
encoded in the state of multiple atomic ensembles, team A
owns the light modes interacting with the source units, and
team B controls the target storage units. Perfect CVMMES
for N modes enable, moreover, data compression in the
form of multipartite dense coding to transmit N-way clas-
sical signals simultaneously [29]. Further applications in-
clude quantum secret or state sharing [30].

Clearly, any implementation will be affected by experi-
mental imperfections, mainly traceable to the usage of a
finite degree of squeezing in the preparation of the team-
work resources. This results in a non-unit fidelity in the
transmission (as seen in Fig. 1(b) for finite r, where e.g.,
F � 80% for 20 dB of resource squeezing). The ensuing
inefficiency of the protocol propagates with the number K
of input modes to be teleported between the two teams. For
instance, suppose the teamwork resource is a weighted
graph state of N ¼ 2K modes, locally reducible to a tensor
product of K two-mode squeezed states, with squeezing r,
across any partition into two blocks of K modes each. Let
us consider as an input state a K-mode GHZ-type sym-
metric state with local squeezing z [11,24]. Each mode of
the input state is individually teleported via a correspond-
ing approximate EPR channel. The overall teamwork fidel-
ity F K scales exponentially with K, as ½ðcoshzÞ�1F 1�K �
F K � F 1

K, whereF 1 ¼ ð1þ tanhrÞ=2 is the fidelity [10]
for teleporting a single-mode vacuum via a two-mode
squeezed state with squeezing r. We observe that if r 	
0 (quasiperfect CVMMES resource), then the performance
is slightly affected by a larger input size, while for mod-
erate (realistic) squeezing r in the resource the perform-
ance can be quickly degraded with K, and the degradation
is enforced by the amount of entanglement in the input
state (in this case, z). Suitable generalizations and optimi-
zations of the conventional Braunstein-Kimble teleporta-
tion scheme [10], which is a building block of our
networked scheme, might result in improved efficiencies
for a given finite squeezing resource.

The demonstration advanced in this Letter of the power-
ful features of quantum teamwork protocols, peculiar of

CV systems and structurally precluded to many-qubit sce-
narios, opens an avenue for the deep investigation of the
characteristic traits of high-dimensional multipartite entan-
glement and their exploitation to convey multimedia infor-
mation over a global quantum communication web.
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