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The Kerr nonlinearity is investigated in an N-type four-level atomic system whose both supper levels are degenerated or nearly
degenerate. It is found that the spontaneously generated coherence as a result of the degenerate levels can change the Kerr
nonlinearity dramatically depending on the angle between two spontaneous channels. In addition, we discover that the probe
field makes its own contribution to the nonlinearity in comparison to indifference in general three-level systems.
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In the coherent interaction between light fields and atoms
quantum coherence or interference gives rise to a series
of interesting effects such as coherent population trapping
(CPT) [1], electromagnetically induced transparency (EIT)
[2–4], and electromagnetically induced absorption (EIA) [5–
8]. Recent years, spontaneously generated coherence (SGC)
[9, 10] brought about by degenerate or nearly degenerate
levels attracted a lot of interests. The SGC refers to the inter-
ference between spontaneous emission paths. The existence
of such interference relies on the angle between two dipole
transitions. With the exception of theoretical investigation
which revealed that SGC leads to some interesting results it
was also experimentally ascertained that the SGC plays a key
role in charged quantum dots, which has potential value on
element in quantum information network [11–14].

As is widely accepted, the third-order nonlinearity in
optical media plays a crucial role in the nonlinear optics.
Quantum coherence or interference can easily enhance the
nonlinearity of optical media regardless of the condition of
weak-light [15–21]. On account of the rarity of the SGC,
the relationship between nonlinearity and SGC was seldom
studied apart from a recent theoretical investigation carried
out onto the Kerr nonlinearity of general three-level systems
[22]. We focus our interest on the Kerr nonlinearity with
regard to the SGC in an N-type four-level system.

TheN-type four-level system with supper levels degener-
ate is shown in Figure 1. The levels |2〉 and |4〉 are excited
levels and nearly degenerate, while the levels |1〉 and |3〉
are ground levels. A coherent field wS drives the transition
|3〉 − |4〉 with the Rabi frequency ΩS, and another field wC

couples the transition |3〉 − |2〉 with the Rabi frequency ΩC .
The transitions |3〉 − |2〉 and |3〉 − |4〉 are simultaneously
monitored by the probe field wP with the Rabi frequency
ε. The excited level |4〉 has a spontaneous emission rate
γ3, whereas the excited level |2〉 has the two γ1 and γ2

corresponding to lower levels |1〉 and |3〉, respectively.
The Hamiltonian of the above system can be written as

H = H0 +HI , where

H0 = −�ΔC|1〉〈1| − �δ|3〉〈3| − �(δ − ΔS)|4〉〈4|,
HI = −�ΩC|2〉〈1| − �ε|2〉〈3| − �ΩS|4〉〈3| +H.c.

(1)

In (1), ΔC = w21 − wC , ΔS = w43 − wS, and δ = w23 − wP .
According to the Hamiltonian, the density matrix equations
governed by master equation can be written as

ρ̇11 = iΩ∗Cρ21 − iΩCρ12 + 2γ1ρ22,

ρ̇21 = −
(
iΔC + γ1 + γ2

)
ρ21 + iΩC

(
ρ11 − ρ22

)

+ iερ31 − p
√
γ2γ3ρ41,
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ρ̇31 = i(ΔP − ΔC)ρ31 + iε∗ρ21 − iΩCρ32 + iΩ∗S ρ41,

ρ̇41 =
[
i(ΔP − ΔS − ΔC)− γ3

]
ρ41

− iΩCρ42 + iΩSρ31 − p
√
γ2γ3ρ21,

ρ̇22 = iΩCρ12 − iΩ∗Cρ21 + iερ32 − iΩ∗P ρ23

− 2
(
γ1 + γ2

)
ρ22 − p

√
γ2γ3

(
ρ42 + ρ24

)
,

ρ̇32 =
[
iΔP −

(
γ1 + γ2

)]
ρ32 − iΩ∗Cρ31

+ iε∗
(
ρ22 − ρ33

)
+ iΩ∗S ρ42 − p

√
γ2γ3ρ34,

ρ̇42 =
[
i(ΔP − ΔS)−

(
γ1 + γ2 + γ3

)]
ρ42 − iΩ∗Cρ41

− iε∗ρ43 + iΩSρ32 − p
√
γ2γ3

(
ρ22 + ρ44

)
,

ρ̇33 = iε∗ρ23 − iερ32 + iΩ∗S ρ43 − iΩSρ34 + 2
(
γ1 + γ2

)
ρ22

+ 2γ3ρ44 + 2p
√
γ2γ3

(
ρ42 + ρ24

)
,

ρ̇43 = −
(
iΔS + γ3

)
ρ43 − iερ42 + iΩS

(
ρ33 − ρ44

)− p
√
γ2γ3ρ23,

ρ̇44 = iΩSρ34 − iΩ∗S ρ43 − 2
(
γ1 + γ2

)
ρ44 − p

√
γ2γ3

(
ρ24 + ρ42

)
.

(2)

The above density elements observe the relations ρ11 +
ρ22 + ρ33 + ρ44 = 1 and ρi j = ρ∗ji. The term p

√
γ2γ3

stands for the SGC which is resulted from the cross-coupling
between two spontaneous emission channels. The parameter
p is defined as p = |−→μ23 · −→μ43| exp(iθ)/(|−→μ23||−→μ43|) =
cos θ where θ denotes the angle between the dipole matrix
elements −→μ23 and −→μ43.

Our analysis is based on the steady-state solutions of
the density matrix equations; therefore we set ρ̇i j = 0.
However, actually; to give the accurate solution of every
matrix element is unrealistic, so we have to turn to some
techniques or parameters. We assume that ρ11 + ρ22 = C1

and ρ33 + ρ44 = C2 where C1 and C2 are constants satisfying
the relations C1 + C2 = 1, 0 ≤ C1 ≤ 1, and 0 ≤ C2 ≤ 1.
On condition that the drive field wC and the signal field
wS are much stronger than the probe field wP , we use nth-
order of perturbation theory on ε. The first- and third-
order susceptibilities are governed by the expressions χ(1) =
2N|μ23|2ρ(1)

23 /ε0�ε and χ(3) = 2N|μ23|4ρ(3)
23 /3ε0�3ε3, where N

represents the number of atoms in an ensemble, ε0 is the
vacuum dielectric constant, and � is the Plank constant. The
Kerr nonlinearity corresponds to the refractive part of the
third-order susceptibility.

The calculated linear absorption, dispersion, nonlin-
earity, and Kerr nonlinearity as a function of the probe
detuning δ with the different SGCs are shown in Figure 2.
For the sake of simplicity, we scale all Rabi frequencies
and offsets by the decay rate γ3 and order γ3 = Γ. From
the figure, we can see that when p = 0, the general
linear absorption, dispersion, nonlinear absorption, and
Kerr nonlinearity of the N-type four-level system occur.
In this case, we calculate and find that the maximal Kerr
nonlinearity is about 300 times larger than that of the
maximal dispersion. When p = −1, it is obvious that
the Kerr nonlinearity is greatly enhanced and in the mean

2γ1

2γ2

ΩC ε ΩS

2γ3

|1〉 |3〉

|4〉

|2〉
δ

Figure 1: The N-type four-level atomic system with supper levels
nearly degenerate.

while the EIT window evidently broadens; moreover this,
the maximal Kerr nonlinearity completely enters the EIT
window and at this time it is 2080 times as large as that
of the dispersion. It illustrates that both enhanced Kerr
nonlinearity and negligible atomic absorption can be met
simultaneously in via SGC. When p = 1, it means that
the dipole matrix elements −→μ23 and −→μ43 are parallel; the
graph showsthat the linear absorption, dispersion, nonlinear
absorption, and Kerr nonlinearity are exactly adverse to
the case p = −1 in the direction of Y-axis. What we
need to emphasize here is that although the maximal Kerr
nonlinearity is smaller than that of p = −1, the ratio of the
maximal Kerr nonlinearity to the maximal dispersion largely
enhances to be 13050.

From the above discussion, we know that the SGC
has changed the Kerr nonlinearity. Now we focus on the
relationship between the maximal Kerr nonlinearity and
the SGC, as it is shown in Figure 3 that the maximal Kerr
nonlinearity is a function of p. From this figure, we can find
that when p is near the point of zero, which means that the
orthogonalization between the dipole elements −→μ23 and −→μ43,
the maximal nonlinearity has its least value. As the absolute
value of p enhances, the nonlinearity shows a relative small
increase. However, When p gets to the values 1 or −1, it
exhibits a rapid increase and obtains the largest value at the
points of 1 and −1. As regards the reason for the difference
between values at p = 1 or p = −1, we temporarily cannot
give sound interpretation.

From [22] we learn that in general three-level systems,
the amplitude of the probe field has no connection with Kerr
nonlinearity; in the case of the present system, however, we
find that the Rabi frequency of the probe field changes the
Kerr nonlinearity. In Figure 4 we show the maximal Kerr
nonlinearity as a function of ε from 0.001 to 0.01 with
different constants C2. It can be seen that when C2 = 0
which implies that the N-type four-level system decays to
a two-level system according to the definition about C2,
the maximal Kerr nonlinearity keeps even, that is to say,
the nonlinearity has nothing to do with the probe field.
When C2 = 0.1 or C2 = 0.2, their results are similar
to each other. Under this condition, in comparison with
the first condition, N-type four-level system comes into
being; as a consequence the Rabi frequency of the probe
field makes its own contribution to the nonlinearity. From
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Figure 2: Linear absorption Im(χ(1)), dispersion Re(χ(1)), nonlinear absorption Im(χ(3)), and Kerr nonlinearity Re(χ(3)) as a function of
the probe detuning δ with the different p. (a), (c), and (e) show the linear absorptions (solid curves) and dispersions (dashed curves); (b),
(d), and (f) show the nonlinear absorptions (dashed curves) and Kerr nonlinearities (solid curves). The couples of (a) and (b), (c) and (d),
and (e) and (f) are in response to different parameters p = 0, −1, and 1, respectively. The other parameters are set as γ1 = γ2 = 0.5γ3,
ΩC = ΩS = 0.2γ3, ΩP = 0.01γ3, ΔC = ΔS = 0, and C2 = 0.1.

the figure, we can find that the maximal Kerr nonlinearity
enhances intensely with the decrease of the Rabi frequency
of the probe field, especially at the point of ε = 0, whereas
it in the case of C2 = 0.2 is more intense than that
in the case of C2 = 0.1. The more C2, the larger the
influence of the SGC on the nonlinearity. When ε = 0,
the Kerr nonlinearity rises to an infinity in response to the
mere existence of the vacuum field. The interesting effect
possibly gives us an effective approach to attain giant Kerr
nonlinearities.

In summary, we have discussed the Kerr nonlinearity in
the N-type four-level system with degenerate supper levels.
The results revealed that the SGC can enhance the Kerr
nonlinearity, especially when the angle between spontaneous

emission channels tends to be zero or π. At the same
time, because of the existence of the SGC, and because the
complexity of the system strengthens and becomes quite
different from that of general three-level systems, we find that
the Rabi frequency of the probe field as a part of two-photon
process also makes its own effort to the Kerr nonlinearity; the
result shows the smaller the Rabi frequency is, the larger the
Kerr nonlinearity is.
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Figure 3: The maximal Kerr nonlinearity as a function of p. Other
parameters are the same as those in Figure 2.
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Figure 4: The maximal Kerr nonlinearity as a function of the Rabi
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Other parameters are the same as those in Figure 2.
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