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Generation of multicolored tripartite entanglement
by frequency doubling in a two-port resonator
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Multicolored multipartite entanglement is of great importance in quantum communication and quantum in-
formation networks. In this paper, we calculate the quantum fluctuations of the fundamental frequency pump
beam and second-harmonic beams in a two-port frequency doubling resonator, and investigate the tripartite
continuous-variable entanglement generated by this device for the first time, to our knowledge. The quantum
correlation among fundamental frequency pump beam and two harmonic beams is studied using a necessary
and sufficient criterion for Gaussian entanglement states, the positivity under partial transposition. It is found
that two-color tripartite entanglement exists in a large range of pump intensities and analysis frequencies.
© 2010 Optical Society of America
OCIS codes: 270.0270, 270.6570, 190.2620.
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ntanglement, which is probably the most special one of
ll the quantum phenomena, is considered to be the basic
esource of quantum information processing. Experimen-
al and theoretical works about bipartite entanglement
ere performed in diverse systems, such as optical para-
etric amplifier or optical parametric oscillator [1,2],

ombination of two squeezed lights with a beam splitter
3], and frequency doubling in a resonator with two out-
ut ports [4,5]. The bipartite entanglement has already
een applied in quantum teleportation [6–8], dense cod-
ng [9], cryptography [10], and tomography of state [11].
ow, entanglement between more than two parties is go-

ng to be the key ingredient for advanced quantum com-
unication, for example, quantum teleportation network

12], telecloning [13,14], and controlled dense coding
15,16]; and the multipartite entangled beams with differ-
nt frequencies will be more important since it will be
ecessary for the quantum networks and the message
torage, in which the wavelengths are connected with fi-
er window, air window, and different atom transition
ines. Research on the multicolored multipartite quantum
ntanglement has been developed. The generation of
ontinuous-variable tripartite entanglement by cascaded
onlinear interaction has been proposed theoretically in
n optical parametric oscillator cavity with parametric
ownconversion and sum-frequency [17]. Villar et al. dem-
nstrated theoretically that the quantum entanglement
xists among the three output fields (pump, signal, and
dler) of a triply resonant nondegenerate optical paramet-
ic oscillator operating above threshold [18]. Zhai et al.
hen demonstrated the tripartite entanglement in a pro-
ess of type-II second-order harmonic generation (SHG)
ith a triply resonant optical cavity [19,20]. Furthermore
0740-3224/10/122721-6/$15.00 © 2
wo- and three-color optical quantum correlations have
een observed, respectively, in experiment recently by
rosse et al. and Coelho et al. [21,22]. They opened a way

f generating the multicolored entangled beams.
In this paper we report a generation of tripartite quan-

um entanglement with two frequencies in the SHG pro-
ess with a dual-port cavity. The quantum correlations
mong the fundamental frequency field and two output
armonic beams are discussed versus the pump intensity
nd analysis frequency using the positivity under partial
ransposition (PPT) criterion.

Figure 1 shows the dual-ported SHG cavity that can
rovide two harmonic outputs and a fundamental fre-
uency field. The cavity is resonant at the fundamental
requency, and both mirrors are transparent for the
econd-harmonic field. The pump fundamental frequency
eam enters the cavity at the input-output coupler 1 and
scillates in cavity. The forward fundamental frequency
eld traverses the crystal from left to right; thus one har-
onic field (SH1) is generated and output completely at

oupler 2, indicated as output 1. Then the backward fun-
amental frequency field traverses the crystal from right
o left in cavity, and the second-harmonic field (SH2) is
enerated. Both the output fundamental frequency field
nd a second-harmonic field (SH2) are output at coupler
, indicated as output 2. Both second-harmonic waves
H1 and SH2 are generated by the same fundamental

requency field in forward and backward processes, re-
pectively; they are correlated with each other and also
orrelated with fundamental wave under appropriate con-
itions.
The intra-cavity fundamental frequency and harmonic

eld are self-consistent at the steady state condition, and
010 Optical Society of America
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he intra-cavity field annihilation operators at the right of
nput-output coupler 1 âiC can be written as

âiC�t + �� = r1t4
LN��2�r2t3

LN��1�âiC�t� + t1b̂i1�t�

+ r1t4
LN��2�t2b̂i2�t� − r1t4

LN��2�r2r3
Lb̂i3�t�

− r1r4
Lb̂i4�t�. �1�

ere i=1,2 are the corresponding fundamental and har-
onic frequency fields, respectively, and these subscripts

re used in the whole paper. b̂ij�t� are the annihilation op-
rators of vacuum for frequency i at mirror j (j=1,2 cor-
espond to couplers 1 and 2, respectively, while j=3,4 cor-
espond to residual intra-cavity losses due to the
bsorption of the crystal and the reflections at crystal two
urfaces, respectively; these subscripts are also used in
he whole paper). � is a cavity round trip time. Nonzero
iagonal elements of the 4�4 matrix for two output cou-
lers’ transmission and reflection are quoted as

tj = diag��T1j,�T2j,�T1j,�T2j�, �2a�

rj = diag��1 − T1j,�1 − T2j,�1 − T1j,�1 − T2j�. �2b�

ere Tij denote the power transmittance for frequency i
t mirror j. N��i� is the transformation matrix of single-
ass traversing the crystal; it embodies a gain in second-
armonic generation with arbitrary interaction length �i
23–25]. The expressions of N��i� are given in Appendix A
23,24]. The interaction length �i can be given by �1

��n1 /n2���1ENL1Pin�1/2, �2= ��n1 /n2���2ENL2Pin�1/2. Here
e have introduced conversion efficiencies �1=P21/Pin,

2=P22/Pin. P21 and P22 are the harmonic powers gener-
ted by forward and backward fundamental frequency
aves, respectively, and Pin is the fundamental frequency
ump power. ENL1 and ENL2 are the single-pass conver-
ion efficiencies of two second-harmonic waves, respec-
ively, which can be measured in experiment. n1 �n2� is
he fundamental (second-harmonic) refractive index. Re-
idual intra-cavity losses are described by coefficients Lij,
hich are taken into account as vacuum introduced by

he artificial ports (beam splitters 3 and 4) at two ends of
he crystal, and corresponding to the transmission and re-
ection matrices �tj

L ,rj
L� are defined as

tj
L = diag��1 − L1j,�1 − L2j,�1 − L1j,�1 − L2j�, �3a�

rj
L = diag��L1j,�L2j,�L1j,�L2j�. �3b�

he Fourier transforms of Eq. (1) are â�t+��� â���ei��,
ˆ �t�� â���. So we obtain the steady state self-consistent
quation in the frequency domain:

M3

M4C
N (�1�2)

��

��

�����

Nonlinear Crystal

Output1
Pump beam

Output2
M2M1

ig. 1. Dual-port cavity of single resonant SHG: Output1, one
armonic field; Output2, the other harmonic field and the reflect
ump field.
âiC���ei�� = r1t4
LN��2�r2t3

LN��1�âiC��� + t1b̂i1���

+ r1t4
LN��2�t2b̂i2��� − r1t4

LN��2�r2r3
Lb̂i3���

− r1r4
Lb̂i4���. �4�

sing the definitions of the amplitude and phase quadra-
ures,

xiC��� = aic��� + aic
� ���, yiC��� = − i�aic��� − aic

� ����,

uij��� = bij��� + bij
� ���, vij��� = − i�bij��� − bij

� ����, �5�

e can get the amplitude and phase quadratures of all
elds. As the components, the amplitude and phase
uadratures of the fundamental frequency and harmonic
elds can form the vector XC= �x1C ,x2C ,y1C ,y2C�T. The
mplitude and phase quadratures of vacuum at mirror j
orrespond to the vector vj= �u1j��� ,u2j��� ,v1j��� ,v2j����T.
is the analysis frequency. With these definitions and as-

umption, Eq. (4) can be written as

XC = Dr1t4
LN��2�r2t3

LN��1�XC + D�t1v1 + r1t4
LN��2�t2v2

− r1t4
LN��2�r2r3

Lv3 − r1r4
Lv4�, �6�

here we have introduced a diagonal matrix D
diag�e−i�/�c1 ,e−i�/�c2 ,e−i�/�c1 ,e−i�/�c2� which means the
hase shift acquired in one cavity round trip. Here �ci
1/�=c / �2LCavity+2niLcrystal� is the cavity free spectral
ange, c is the speed of light in vacuum, LCavity is the
ength of air in the cavity, Lcrystal is the length of the crys-
al, and i=1,2 correspond to the fundamental frequency
nd SHG, respectively.
The vector of output quadratures is defined as

Xj = �X1j,X2j,Y1j,Y2j�T. �7�

sing boundary condition, the output quadratures can be
ritten as

X1 = t2t3
LN��1�XC − r2v2 − t2r3

Lv3, �8�

X2 = t1XC/Dr1 − v1/r1. �9�

In the case of single resonant fundamental frequency,
he second harmonic transmits completely at output cou-
lers, i.e., T21=T22=1 and T12=0, and the intra-cavity
osses of fundamental frequency fields L13 and L14 at mir-
ors 3 and 4 are nonzero, but the harmonic loss can be ne-
lected, which means L23=L24=0. In fact, all harmonic
osses can be merged with the detectors. Finally, the out-
ut harmonic quadratures, i.e., the element in the vector
j derived from Eqs. (8) and (9), can be written as

X21��� = f11u11��� + f13u13��� + f14u14��� + f21u21���

+ f22u22���, �10a�

Y21��� = g11v11��� + g13v13��� + g14v14��� + g21v21���

+ g22v22���, �10b�

X22��� = h11u11��� + h13u13��� + h14u14��� + h21u21���

+ h u ���, �10c�
22 22
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Y22��� = k11v11��� + k13v13��� + k14v14��� + k21v21���

+ k22v22���. �10d�

X12��� = m11u11��� + m13u13��� + m14u14��� + m21u21���

+ m22u22���, �10e�

Y12��� = n11v11��� + n13v13��� + n14v14��� + n21v21���

+ n22v22���. �10f�

The coefficients �f ,g ,h ,k� have been given in [4], and
hey are shown here again in Appendix A. The coefficients

and n are calculated as

m11 =
ei�/�c1�1 − L13�1 − L14 − �1 − T11

F
, �11a�

m13 = −
�L13�1 − L14N11��2��T11

F
, �11b�

m14 = −
�L14�T11

F
, �11c�

m21 =
eiw/vc2�1 − L13�1 − L14N11��2�N12��1��T11

F
,

�11d�

m22 =
�1 − LN12��2��T11

F
, �11e�

n11 =
eiw/vc1�1 − L13�1 − L14N33��2�N33��1� − �1 − T11

G
,

�12a�

n13 = −
�L13�1 − L14N33��2��T11

G
, �12b�

n14 = −
�L14�T11

G
, �12c�

n21 =
eiw/vc2�1 − L13�1 − L14N33��2�N34��1��T11

G
,

�12d� a
n22 =
�1 − L14N34��2��T11

G
. �12e�

n the above expressions, we have introduced the defini-
ions of F and G:

F = 1 − ei�/�c1�1 − T11�1 − L13�1 − L14N11��1�N11��2�,

�13a�

G = 1 − ei�/�c1�1 − T11�1 − L13�1 − L14N33��1�N33��2�.

�13b�

As a sufficient and necessary criterion for Gaussian en-
anglement states, the PPT is used to test the tripartite
ntanglement by the symplectic eigenvalues [26,27]. The
ovariance matrix of this system can be written as

� =�
c1212

x 0 c1221
x 0 c1222

x 0

0 c1212
y 0 c1221

y 0 c1222
y

c2112
x 0 c2121

x 0 c2122
x 0

0 c2112
y 0 c2121

y 0 c2122
y

c2212
x 0 c2221

x 0 c2222
x 0

0 c2212
y 0 c2221

y 0 c2222
y

� . �14�

ll the elements cpq
x are the correlation coefficient be-

ween amplitude quadratures of output beams �p ,q
12,21,22�, while cpq

y correspond to those of phase
uadratures. They are defined as cpq

x = 1
2 �XpXq

� +Xp
�Xq	, cpq

y

1
2 �YpYq

� +Yp
�Yq	 and can be calculated from Eqs. (10). A

ew covariance matrix �� is given by the congruence
ransform ��=ST�S, where S is the symplectic transfor-
ation,

S = I1 ��
1

�2
0

1

�2
0

0
1

�2
0

1

�2

1

�2
0 −

1

�2
0

0
1

�2
0 −

1

�2

� , �15�

ith I1 being the 2�2 identity matrix [28]. Generally, the
ositivity of the partially transposed matrix can be inves-
igated by the smallest eigenvalue; minimum eigenvalues
ill show the entanglement of three modes. At first, we

an focus on the first block matrix of �� and consider the
ransposition of the fundamental frequency pump mode,

nd find the smallest one among four eigenvalues
E = min
 1
2 �c2121

x + c2222
x ± ��c2121

x �2 + 4c2122
x c2221

x − 2c2121
x c2222

x + �c2222
x �2�, 1

2 �c2121
y

+ c2222
y ± ��c2121

y �2 + 4c2122
y c2221

y − 2c2121
y c2222

y + �c2222
y �2�� . �16�
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hen, other symplectic eigenvalues can also be simply cal-
ulated by the same way of partial transposition. Here,
e choose a 1 cm length KNbO3 as the nonlinear crystal
nd the optimum focusing is 21.1 	m as in [4]. The pa-
ameters are given as ENL1=ENL2=0.015 W−1, n1=n2
2.2, d=11 pm/V, T11=0.01, and L13=L14=0.005 at a

undamental wavelength of 
=860 nm. Three curves
bout minimum symplectic eigenvalues versus the pump
ower are obtained when �=0 in Fig. 2. Here �=� /�ci�
nd the total loss coefficient is �=0.01, which corresponds
o T11=0.01 and L13=L14=0.005. Three curves about
inimum eigenvalues versus the analysis frequency are

iven when Pin=1.5 W in Fig. 3. Each curve of minimum
ymplectic eigenvalues in Figs. 2 and 3 corresponds to a
artial transposition with respect to one of the three
elds: curve i, transposition of the fundamental frequency
eld; curve ii, transposition of SH1; and curve iii, trans-
osition of SH2.
It is obviously found that the all of the eigenvalue

urves are below 1 in Figs. 2 and 3, demonstrating the full
nseparability of the three fields. The curves vary with the
ump power and analysis frequency smoothly, and the
alues of curve i are smaller than those of curves ii and
ii. We can see that the entanglement saturates with the
ump power, and the maximum entanglement is at zero
nalysis frequency. Besides, there is a small difference be-
ween the curves ii and iii in the range of bigger pump
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ig. 2. Lines about symplectic eigenvalues are plotted as func-
ions of Pin when �=0. (i) Transposition of the fundamental fre-
uency field, (ii) transposition of SH1, (iii) transposition of SH2.
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iii

ig. 3. Lines about symplectic eigenvalues are plotted as func-
ions of � when Pin=1.5 W. (i) Transposition of the fundamental
requency field, (ii) transposition of SH1, (iii) transposition of
H2.
ower or smaller analysis frequency; because of the fun-
amental frequency field pump depletion in the cavity, in-
vitably, the backward field is slightly weaker than the
orward field by a small conversion between fundamental
eld and SHG in the first pass through the crystal [4], but

t is balance for the endless input beam at the steady
tate condition.

In conclusion, we have theoretically demonstrated that
he entanglement exists among two harmonic beams and
fundamental frequency beam generated in a frequency

oubling process with a dual-port resonator. We believe
hat such an optical device might be used to produce four
r more party entanglements. It will be very useful in the
uantum information networks.

PPENDIX A: COEFFICIENTS OF MATRIX
LEMENTS AND OUTPUT QUADRATURES
he nonzero elements of the propagation matrix [4,23,24]
re

N11��� =
1 − � tanh �

cosh �
, N12��� =

− �2 tanh �

cosh �
,

N21��� =
1

�2
�tanh � + � sech2 ��, N22��� = sech2 �,

N33��� = sech �, N34��� = −
1

�2
�sinh � + � sech ��,

N43��� = �2 tanh �, N44��� = 1 − � tanh �,

�1 =�n1

n2

��1ENL1pin, �2 =�n1

n2

��2ENL2pin.

he coefficients appearing in Eqs. (9) and (10) are

f11 =
ei�/�c1�T11N21��1�

F
,

f13 =
ei�/�c1�1 − T11�L13�1 − L14N21��1�N11��2�

F
,

f14 = −
ei�/�c1�1 − T11�L14N21��1�

F
,

f21 =
N22��1� − ei�/�c1�1 − T11�1 − L13�1 − L14N11

c2

F
,

f22 =
ei�/�c1�1 − T11�1 − L14N21��1�N12��2�

F
, �A1�

here N11
c2 =N11��2��N11��1�N22��1�−N12��1�N21��1��;

g11 =
ei�/�c1�T11N43��1�

G
,
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g13 = −
ei�/�c1�1 − T11�L13�1 − L14N43��1�N33��2�

G
,

g14 = −
ei�/�c1�1 − T11�L14N43��1�

G
,

g21 =
N44��1� − ei�/�c1�1 − T11�1 − L13�1 − L14N33

c2

G
,

g22 =
ei�/�c1�1 − T11�1 − L14N43��1�N34��2�

G
, �A2�

here N33
c2 =N33��2��N33��1�N44��1�−N34��1�N43��1��;

h11 =
ei�/�c1�T11�1 − L13N11��1�N21��2�

F
,

h13 = −
�L13N21��2�

F
,

h14 = −
ei�/�c1�1 − T11�1 − L13�L14N11��1�N21��2�

F
,

h21 =
�1 − L13N12��1�N21��2�

F
,

h22 =
N22��2� − ei�/�c1�1 − T11�1 − L13�1 − L14N11

c1

F
,

�A3�

here N11
c1 =N11��1��N11��2�N22��2�−N12��2�N21��2��; and

k11 =
ei�/�c1�T11�1 − L13N33��1�N43��2�

G
,

k13 = −
�L11N43��2�

G
,

k14 = −
ei�/�c1�1 − T11�1 − L13�L14N33��1�N43��2�

G
,

k21 =
�1 − L13N34��1�N43��2�

G
,

k22 =
N44��2� − ei�/�c1�1 − T11�1 − L13�1 − L14N33

c1

G
,

�A4�

here Nc1 =N �� ��N �� �N �� �−N �� �N �� ��.
33 33 1 33 2 44 2 34 2 43 2
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