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The continuous variable quadripartite entanglement properties of the output fields by the coupled intracavity
parametric downconversions processes are analyzed theoretically. In the above-threshold region, it shows that
the four output lights are multicolored entangled beams in separable locations with four-mode amplitude
quadratures correlation and relative phase quadratures correlation. © 2010 Optical Society of America
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. INTRODUCTION
ontinuous variable (CV) multipartite entanglement is
rucial and useful for quantum information, especially for
uantum teleportation networks [1], telecloning [2,3], and
ontrolled dense coding [4,5]. Lots of theoretical and ex-
erimental work has been concentrated on the prepara-
ion of multipartite entanglement sources in recent years.
ntil now, the schemes to generate three-mode or multi-
ode entanglement have been reported in many papers

n which this type of entanglement can be prepared by
ombining squeezed beams with linear optics [5–9] or di-
ectly from cascaded nonlinear processes [10–16]. In this
aper, we present CV quadripartite entanglement by
oupled parametric downconversions (CPDC) in a cavity,
hich is called coupled parametric oscillators in [17,18].
The device of coupled parametric oscillators consists of

n optical cavity and two parallel nonlinear waveguides
ith a ��2� component or a nonlinear crystal where the

oupling is realized by evanescent overlaps of the intrac-
vity modes. This type of nonlinear optical coupler has
een investigated both theoretically and experimentally
19,20]. In 2003, J. Herec studied the bipartite entangle-
ent from coupled spontaneous parametric downconver-

ions in the traveling wave configuration [21]. Then M.
ache introduced quantum optical dimer, where coupled
econd-harmonic generation (SHG) took place in a Fabry–
erot cavity [22]. They predicted intensity correlations
etween the modes outside the cavity. Later, the M. K.
lsen group analyzed entanglement and the Einstein–
odolsky–Rosen paradox between the output modes from
oupled intracavity downconverters both in the below-
hreshold region [17] and the above-threshold region [18].
he system is all-integrated, which make it a compact
ource of entangled light. In addition, spatial separation
0740-3224/10/030518-6/$15.00 © 2
f the entangled modes could avoid the division by beam
plitters before measurement as compared to collinear en-
angled beams.

To overcome the exponential decay of the communica-
ion rate with the distance, the protocol of quantum re-
eater has been proposed in quantum telecommunication
23]. The idea of a quantum repeater is to insert quantum
emory elements into the transmission channel every at-

enuation length. Considering that atoms are ideal candi-
ates for storage and light is a natural carrier of quantum
nformation, light of different frequencies will be neces-
ary to connect the photonic- and matter-based physical
ystems [24]. In the present work, we show that the
PDC device can produce four entangled modes centered
t 1560 nm, 1560 nm, 780 nm, and 780 nm, respectively.
s 1560 nm is a transmission window of optical fiber and
80 nm is the absorption line of rubidium atom, the “two-
olor” quadripartite entanglement source can be applied
or a quantum communication network.

. EQUATIONS OF MOTION
he model has been described in [22]. Two ��2� nonlinear
aveguides named A and B are put in a one-sided cavity

Fig. 1), which provides two interactions of type I degen-
rate parametric downconversions. Pump a2 and b2 at fre-
uency �2 are incident upon the nonlinear medium at
patially separated locations. The two inputs may be from
wo lasers or be created from one laser using beam split-
ers. By the processes of degenerate parametric downcon-
ersion, a1 and b1 of frequency �1 are created in
aveguides A and B, respectively, where �2�2�1. We as-

ume the optical modes inside the nonlinear media are
erfectly phase matched and the two nonlinearities are
qual.
010 Optical Society of America
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The total Hamiltonian for this system is given by

Ĥtot = Ĥsys + Ĥcouple + Ĥbath, �1�

here Ĥsys is the system Hamiltonian including nonlinear
nteractions, Ĥcouple represents the coupling between the
aveguides and is modeled as a linear process for descrip-

ion of evanescent waves, and Ĥbath is the Hamiltonian of
he heat bath. The systematic Hamiltonian is given by

Ĥsys = ��− ��1â1
+â1 − ��2â2

+â2� + �− ��1b̂1
+b̂1 − ��2b̂2

+b̂2��

+ � i��

2
�â1

+2â2 − â1
2â2

+� +
i��

2
�b̂1

+2b̂2 − b̂1
2b̂2

+�� . �2�

The first square bracket in the right side is the free
amiltonian of the cavity modes, and the second part pre-

ents the nonlinear interaction between the pump modes
2, b2 and the signal modes a1, b1 of cavity. � is the effec-
ive nonlinear coefficient and is proportional to the non-
inear susceptibility ��2�, and �1=�1−�1

cav and �2=�2
�2

cav represent the cavity detunings from resonances.
The coupling Hamiltonian is given as

Ĥcouple = �J1�â1b̂1
+ + b̂1â1

+� + �J2�â2b̂2
+ + b̂2â2

+�. �3�

1 and J2 are the linear coupling parameters at frequen-
ies �1 and �2. They are sensitive to the specific setup;
or example, the distance between guides, the modes in
he guides, cavity length, and so on. J1 is generally higher
han J2 since a1, b1 modes decay slower than a2, b2 modes
22].

The Hamiltonian of the heat bath is the function of
ath operators �aj, �bj and cavity modes aj, bj �j=1,2�,

Ĥbath = i��
−�

+�

d�������̂a1
+ â1 + �̂a2

+ â2 + �̂b1
+ b̂1 + �̂b2

+ b̂2� + h.c.

�4�

��� is the coupling constant and is independent of fre-
uency

���� =	�

	
, �5�

here � denotes the damping rate. For simplicity, sup-
ose that all of the internal losses of the system are due to
eakage via mirror M with damping constants �a1, �a2,
b1, and �b2, and assume that �a1=�b1=�1, �a2=�b2=�2.
hen the losses are very small, � are related to the am-

ig. 1. (Color online) Sketch of coupled optical oscillators. Two
onlinear waveguides A and B are put inside a cavity. Pump a2
nd b2 from one laser are incident into the cavity through mirror
. Fields a1 and b1 are created, respectively, by the processes of

arametric downconversion. a1
in ,a2

in ,b1
in ,b2

in are the incoming
elds, a1

out ,a2
out ,b1

out ,b2
out are the corresponding outgoing fields.
j

litude reflection coefficients rj and the amplitude trans-
ission coefficients tj approximately, rj=1−�j, tj=	2�j.
In the Heisenberg picture, we obtain the quantum

angevin equations of motion for the four cavity modes,



dâ1

dt
= �− �1 + i�1�â1 + �â1

+â2 − iJ1b̂1 + 	2�1â1
in,



dâ2

dt
= �− �2 + i�2�â2 −

�

2
â1

2 − iJ2b̂2 + 	2�2â2
in,



db̂1

dt
= �− �1 + i�1�b̂1 + �b̂1

+b̂2 − iJ1â1 + 	2�1b̂1
in,



db̂2

dt
= �− �2 + i�2�b̂2 −

�

2
b̂1

2 − iJ2â2 + 	2�2b̂2
in. �6�

Here 
 is the cavity round trip time and is assumed to
e the same for all four fields. The detunings are de-
cribed by the dimensionless variables �1=�1
 and �2

�2
, correspondingly. â1
in, â2

in, b̂1
in, and b̂2

in are the opera-
ors corresponding to the input fields.

. THE SOLUTIONS OF STEADY STATE
ND QUADRATURE FLUCTUATIONS

n order to analyze the quantum entanglement, we calcu-
ate the steady-state solutions of Eqs. (6) first. By setting
he left side of the equations to be zero and replacing all
perators with their expectation values, the steady-state
quations are

�− �1 + i�1��1 + ��1
*�2 − iJ11 = 0,

�− �2 + i�2��2 −
�

2
�1

2 − iJ22 + 	2�2�2
in = 0,

�− �1 + i�1�1 + �1
*2 − iJ1�1 = 0,

�− �2 + i�2�2 −
�

2
1

2 − iJ2�2 + 	2�22
in = 0. �7�

Here �1, �2, 1, and 2 are the steady-state amplitudes
f the four intracavity modes a1, a2, b1, and b2. �2

in and 2
in

enote the amplitudes of two input pump fields outside
he coupler. In the symmetric case (�2=2 and 	2�2�2

in

	2�22
in=�), the steady-state solutions below the thresh-

ld are



q
i
w

a
fl
o
e

w

520 J. Opt. Soc. Am. B/Vol. 27, No. 3 /March 2010 Guo et al.
�1 = 1 = 0,

�2 = 2 =
�

�2 + i�J2 − �2�
. �8�

The steady-state solutions above the threshold are

�1 = 1 = A1ei�1,

A1 =	 2

�2 �	�2�2 − ��1�2 + �2�1�2 + ��1�2 − �1�2��,

�1 = arccos	1

2
+

	�2�2 − ��1�2 + �2�1�2

2��
,

�2 = 2 = A2ei�2,

A2 =
	�1

2 + �1
2

�
,

�2 = arctan
�1

�1
+ 2�1,

�1 = J1 − �1,

�2 = J2 − �2. �9�

The oscillation threshold is expressed by

�th =
	��1

2 + �J1 − �1�2���2
2 + �J2 − �2�2�

�
. �10�

For the CV, we need to look at the fluctuations of the
uadrature amplitude and the phase components. Follow-
ng the semiclassical method, the intracavity fields can be
ritten as

âj = �j +
1

2
��X̂aj + i�Ŷaj�, �11�

b̂j = j +
1

2
��X̂bj + i�Ŷbj�. �12�

Here �X̂aj, �X̂bj �j=1,2� define the fluctuations of the
mplitude quadrature and �Ŷaj, �Ŷbj �j=1,2� describe the
uctuations of the phase quadrature. Under the condition
f the above threshold, combining steady-state solution
xpressions (9) and Eqs. (6) we have



⎝
⎜
⎜
⎜
⎛

d�X̂a1

dt

d�X̂a2

dt

d�X̂b1

dt

d�X̂b2

dt

d�Ŷa1

dt

d�Ŷa2

dt

d�Ŷb1

dt

d�Ŷb2

dt
⎠
⎟
⎟
⎟
⎞

= 
M1 M2

M3 M4
��

�X̂a1

�X̂a2

�X̂b1

�X̂b2

�Ŷa1

�Ŷa2

�Ŷb1

�Ŷb2

 + 
N 0

0 N��
�X̂a1

in

�X̂a2
in

�X̂b1
in

�X̂b2
in

�Ŷa1
in

�Ŷa2
in

�Ŷb1
in

�Ŷb2
in

 ,

�13�

ith

M1 = �
− �1 + f h 0 0

− h − �2 0 0

0 0 − �1 + f h

0 0 − h − �2

 ,

M2 = �
− �1 + p q J1 0

q − �2 0 J2

J1 0 − �1 + p q

0 J2 q − �2

 ,

M3 = �
�1 + p − q − J1 0

− q �2 0 − J2

− J1 0 �1 + p − q

0 − J2 − q �2

 ,

M4 = �
− �1 − f h 0 0

− h − �2 0 0

0 0 − �1 − f h

0 0 − h − �2

 ,

N = �
	2�1 0 0 0

0 	2�2 0 0

0 0 	2�1 0

0 0 0 	2�2

 ,

f = �A2 cos �2,

h = �A cos � ,
1 1
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p = �A2 sin �2,

q = �A1 sin �1.

X̂aj�bj�
in and �Ŷaj�bj�

in �j=1,2� are the non-correlated fluctua-
ions entering the cavity through the coupling mirror and
ave variances ���X̂aj�bj�

in �2�= ���Ŷaj�bj�
in �2�=1.

. ENTANGLEMENT OF THE OUTPUT
IGHT FIELDS
he output fluctuations in the frequency space can be cal-
ulated after the Fourier transformation. The relation-
hip between the output quantities and the input quanti-
ies are [25]

�out� = �
N 0

0 N��i�
I − 
M1 M2

M3 M4
��
N 0

0 N� − I��in�,

�out� =�
�X̂a1

out���

�X̂a2
out���

�X̂b1
out���

�X̂b2
out���

�Ŷa1
out���

�Ŷa2
out���

�Ŷb1
out���

�Ŷb2
out���

 , �in� =�
�X̂a1

in ���

�X̂a2
in ���

�X̂b1
in ���

�X̂b2
in ���

�Ŷa1
in ���

�Ŷa2
in ���

�Ŷb1
in ���

�Ŷb2
in ���

 . �14�

I is the unit matrix. Based on the full inseparability cri-
eria of multipartite CV entanglement proposed by P. van
oock and A. Furusawa [26], we have the following six in-
qualities:

��2�Ŷa1 − Ŷa2�� + ��2�X̂a1 + X̂a2 + gb1X̂b1 + gb2X̂b2�� � 4,

�15�

��2�Ŷa1 + Ŷb1�� + ��2�X̂a1 + ga2X̂a2 − X̂b1 + gb2X̂b2�� � 4,

�16�

��2�Ŷa1 + Ŷb2�� + ��2�X̂a1 + ga2X̂a2 + gb1X̂b1 − X̂b2�� � 4,

�17�

��2�Ŷa2 + Ŷb1�� + ��2�ga1X̂a1 + X̂a2 − X̂b1 + gb2X̂b2�� � 4,

�18�

��2�Ŷa2 + Ŷb2�� + ��2�ga1X̂a1 + X̂a2 + gb1X̂b1 − X̂b2�� � 4,

�19�

��2�Ŷb1 − Ŷb2�� + ��2�ga1X̂a1 + ga2X̂a2 + X̂b1 + X̂b2�� � 4,

�20�

where ga1, ga2, gb1, and gb2 are scaling factors. There
re seven kinds of separable or partially separable states
or four-party entanglement and each satisfies several in-
qualities expressed above, which can be written in the
orm of a statistical mixture of reduced density operators
ith weights �m�0:

�̂ = �
m

�m�̂m,a1a2b1 � �̂m,b2 ⇒ �17�,�19�,�20�,

�̂ = �
m

�m�̂m,a1a2b2 � �̂m,b1 ⇒ �16�,�18�,�20�,

�̂ = �
m

�m�̂m,a1b1b2 � �̂m,a2 ⇒ �15�,�18�,�19�,

�̂ = �
m

�m�̂m,a2b1b2 � �̂m,a1 ⇒ �15�,�16�,�17�,

�̂ = �
m

�m�̂m,a1a2 � �̂m,b1b2 ⇒ �16�,�17�,�18�,�19�,

�̂ = �
m

�m�̂m,a1b1 � �̂m,a2b2 ⇒ �15�,�17�,�18�,�20�,

�̂ = �
m

�m�̂m,a1b2 � �̂m,a2b1 ⇒ �15�,�16�,�19�,�20�.

�21�

Considering violations of the inequalities of Eqs. (15)
nd (16), all separable forms are excluded except the form

ˆ =�m�m�̂m,a1a2b1 � �̂m,b2. In order to rule out this sepa-
able state, one of the inequalities in Eqs. (17) and (19) or
20) should be violated in addition. Hence we may choose

Sa1a2 = ��2�Ŷa1 − Ŷa2�� + ��2�X̂a1 + X̂a2 + gb1X̂b1 + gb2X̂b2��

� 4, �22�

Sa1b1 = ��2�Ŷa1 + Ŷb1�� + ��2�X̂a1 + ga2X̂a2 − X̂b1 + gb2X̂b2��

� 4, �23�

Sb1b2 = ��2�Ŷb1 − Ŷb2�� + ��2�ga1X̂a1 + ga2X̂a2 + X̂b1 + X̂b2��

� 4. �24�

The satisfaction of the three inequalities is sufficient
or concluding CV GHZ-type four-party entanglement.

ith detuning �1=J1 and �2=J2, the steady-state solu-
ions of Eq. (9)are simplified to

�1 = 1 = A1 =
1

�
	2�� − 2�1�2,

�2 = 2 = A2 =
�1

�
,

�th =
�1�2

�
. �25�

hese are the same solutions as for the degenerate optical
arametric oscillator (OPO) above threshold.
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The correlation spectra characters are shown numeri-
ally in Figs. 2–4. The minimum correlation fluctuation
pectra Sa1a2, Sa1b1, Sb1b2 versus the analysis frequency
=�
 /�1 are plotted in Fig. 2, with pump parameter �
� /�th=1.2. The other parameters are set as �1=0.01, �2
0.05, �1=J1=10�1, and �2=J2= 1

5�2. Obviously, all val-
es of Sa1a2, Sa1b1, and Sb1b2 are below the quantum limit
f 4 in a wide frequency range, and the maximum corre-
ation is obtained at zero frequency. With the same pa-
ameter values, we plot the fluctuation spectra as a func-
ion of the normalized pumping power � at �=0 in Fig. 3.
t shows that the three violations are satisfied when �
1.1, and the best correlations for all of four modes are

chieved at about �=1.2. In both Figs. 2 and 3, it can be
een that the symmetry of the waveguides A and B makes
a1a2=Sb1b2, and they are always worse than the correla-

ion spectrum Sa1b1. The correlation spectrum Sa1b1
hows the bipartite entanglement between a1 and b1
odes as in [17,18]. Meanwhile, the harmonic entangle-
ent [27,28] of a1, a2 and b1, b2 also can be illustrated by

a1a2 and Sb1b2. In the end, we investigate the effect of
he linear coupling parameters in the system. It is found
hat J2 has a small influence on the correlations. Figure 4
hows the dependences of three correlation spectra on the
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ig. 2. (Color online) Quantum correlation spectra versus nor-
alized frequency �=�
 /�1 for �=� /�th=1.2.
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ig. 3. (Color online) Quantum correlation spectra as functions
f pump parameter �=� /� at �=0.
th
oupling parameter J1 with �=0, �=1.2, �1=0.01, �2
0.05 and �2=J2= 1

5�2. It is noted that Sa1a2 and Sb1b2 de-
rease when the J1 increases, and meanwhile the mini-
um value of Sa1b1 is obtained when J1=0.015. The mini-
um value of Sa1a2+Sb1b2+Sa1b1 is achieved if we choose

1=0.1. According to the above discussion, the insepara-
ility criterion is satisfied for the four modes of CPDC
hen the pump power is above threshold.

. CONCLUSION
e have calculated the correlation spectra of four output

ights from a coupled optical system. The results show
hat a CV GHZ-type multicolored inseparable state is pro-
uced in a large range when the system operates above
hreshold. Unlike other schemes, the two sets of output
elds can be degenerate in both frequency and polariza-
ion, and they can exit the cavity at spatially separated
ocations. The all-integrated configuration makes the sys-
em a stable tunable source for bright multimode en-
angled beams applied in the quantum communication
etwork.
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