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Abstract: We experimentally demonstrated that the quantum correlations
of amplitude and phase quadratures between signal and idler beams
produced from a non-degenerate optical parametric amplifier (NOPA) can
be significantly improved by using a mode cleaner in the pump field and
reducing the phase fluctuations in phase locking systems. Based on the
two technical improvements the quantum entanglement measured with a
two-mode homodyne detector is enhanced from ∼ 4 dB to ∼ 6 dB below
the quantum noise limit using the same NOPA and nonlinear crystal.

© 2010 Optical Society of America

OCIS codes: (270.0270) Quantum optics; (270.6570) Squeezed states

References and links
1. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional

Quantum Teleportation,” Science 282, 706–709 (1998).
2. H. Yonezawa, T. Aoki, and A. Furusawa, “Demonstration of a quantum teleportation network for continuous

variables,” Nature 431
3. W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, Hans-A. Bachor, T. Symul, and P. K. Lam,

“Experimental investigation of continuous-variable quantum teleportation,” Phys. Rev. A 67, 032302 (2003).
4. X. Y. Li, Q. Pan, J. T. Jing, J. Zhang, C. D. Xie, and K. C. Peng, “Quantum Dense Coding Exploiting a Bright

Einstein-Podolsky-Rosen Beam,” Phys. Rev. Lett. 88, 047904 (2002).
5. J. T. Jing, J. Zhang, Y. Yan, F. G. Zhao, C. D. Xie, and K. C. Peng, “Experimental Demonstration of Tripartite

Entanglement and Controlled Dense Coding for Continuous Variables,” Phys. Rev. Lett. 90, 167903 (2003).
6. X. J. Jia, X. L. Su, Q. Pan, J. R. Gao, C. D. Xie, and K. C. Peng, “Experimental Demonstration of Unconditional

Entanglement Swapping for Continuous Variables,” Phys. Rev. Lett. 93, 250503 (2004).
7. K. Bencheikh, T. Symul, A. Jankovic, and J. A. Levenson, “Quantum key distribution with continuous vari-

ables,”,J. Mod. Opt. 48, 1903–1920 (2001).
8. X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on

optical entangled states without signal modulation,” Europhys. Lett. 87, 2000–2005 (2009).
9. N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal Quantum

Computation with Continuous-Variable Cluster States,” Phys. Rev. Lett. 97, 110501 (2006).
10. A. H. Tan, Y. Wang, X. L. Jin, X. L. Su, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental generation

of genuine four-partite entangled states with total three-party correlation for continuous variables,” Phys. Rev. A
78, 013828 (2008).

11. J. Yoshikawa, Y. Miwa, A. Huck, U. L. Andersen, P. van Loock, and A. Furusawa, “Demonstration of a Quantum
Nondemolition Sum Gate,” Phys. Rev. Lett. 101, 250501 (2008).

12. A. Furusawa, and N. Takei, “Quantum teleportation for continuous variables and related quantum information
processing,” Phys. Rep. 443, 97–119 (2007).

#122566 - $15.00 USD Received 11 Jan 2010; revised 9 Feb 2010; accepted 10 Mar 2010; published 11 Mar 2010

(C) 2010 OSA 15 March 2010 / Vol. 18,  No. 6 / OPTICS EXPRESS  6149



13. S. F. Pereira, K. C. Peng, and H. J. Kimble, “Squeezed state generation and nonclassical correlations in nonde-
generate parametric down conversion,” in Coherence and Quantum Optics VI, J. H. Eberly, L. Mandel and E.
Wolf, eds. (Plenum, New York, 1990) pp. 889–890

14. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for
continuous variables,” Phys. Rev. Lett. 68, 3663 (1992).

15. Y. Zhang, H. Wang, X. Y. Li, J. T. Jing, C. D. Xie, and K. C. Peng, “Experimental generation of bright two-mode
quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier,” Phys. Rev. A 62,
023813 (2000).

16. W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental Investigation of Criteria for Continuous-
Variable Entanglement,” Phys. Rev. Lett. 90, 043601 (2003).

17. J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Effects of mode coupling on the generation of quadra-
ture Einstein-Podolsky-Rosen entanglement in a type-II optical parametric oscillator below threshold,” Phys.
Rev. A 71, 022313 (2005).

18. A. S. Villar, L. S. Cruz, K. N. Cassemiro, M. Martinelli, and P. Nussenzveig, “Generation of bright two-color
continuous variable entanglement,” Phys. Rev. Lett. 95, 243603 (2005).

19. X. Su, A. Tan, X. Jia, Q. Pan, C. Xie, and K. Peng, “Experimental demonstration of quantum entanglement
between frequency-nondegenerate optical twin beams,” Opt. Lett. 31

20. J. T. Jing, S. Feng, R. Bloomer, and O. Pfister, “Experimental continuous-variable entanglement of phase-locked
bright optical beams,” Phys. Rev. A 74, 041804 (2006).

21. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of -9 dB quadrature squeezing
with improvement of phase stability in homodyne measurement,” Opt. Express 15, 4321–4327 (2007).
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-4321

22. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R.
Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett. 100, 033602
(2008).

23. M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable
cluster states,” Phys. Rev. A 78, 012301 (2008).

24. R. W. P. Drever, J. L. Hall, F. V. Kowalski J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and
frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).

25. J. Zhang and K. C. Peng, “Quantum teleportation and dense coding by means of bright amplitude-squeezed light
and direct measurement of a Bell state,” Phys. Rev. A 62, 064302 (2000).

26. Lu-Ming Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability Criterion for Continuous Variable Systems,”
Phys. Rev. Lett. 84, 2722 (2000).

27. P. T. Cochrane, T. C. Ralph, and G. J. Milburn, “Teleportation improvement by conditional measurements on the
two-mode squeezed vacuum,” Phys. Rev. A 65, 062306 (2002).

1. Introduction

Continuous variable (CV) quantum entanglement between amplitude and phase quadratures
of optical fields has been intensively investigated. The optical CV entangled states have been
utilized in quantum information science to realize deterministic quantum teleportation of coher-
ent states [1, 2, 3], unconditional dense coding quantum communication [4, 5], entanglement
swapping [6], quantum key distribution [7, 8], and so on. Recently, it has been proved that CV
entanglement can be applied to develop quantum computation and universal quantum informa-
tion process [9, 10, 11, 12].

At the beginning of 1990s, Kimble’s group experimentally generated a pair of CV entangled
optical beams by type-II down-conversion in a subthreshold nondegenerate optical parametric
amplifier (NOPA) and demonstrated the Einstein-Podolsky-Rosen (EPR) paradox firstly in CV
regime [13, 14]. The quantum correlations of amplitude and phase quadratures between out-
put signal and idler beams observed in their experiment were 3.6±0.2 dB below the quantum
noise limit (QNL) normalized to the vacuum noise of the corresponding optical field. Almost
ten years later, the bright EPR entangled beams with ∼ 4 dB amplitude (phase) correlation and
phase (amplitude) anticorrelation were generated from a NOPA with injected signals operating
at amplification (deamplification) [4, 15, 16, 17]. Intense EPR entangled beams were produced
from optical parametric oscillators (OPOs) operating above threshold by several groups re-
cently [18, 19, 20]. However, the quadrature-phase correlations of these intense beams were
worse than that obtained from NOPAs below threshold. Another efficiently and extensively
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used scheme generating CV entangled states is to interfere two single-mode squeezed beams
on a 1 : 1 beamsplitter [1, 2]. The two squeezed beams should have identical frequency to
achieve stable interference. In these experiments, they were produced from two degenerate op-
tical parametric amplifiers (DOPAs) with identical type-I nonlinear crystal pumped by a laser
to ensure their optical frequency being the same. Recent years, the single-mode squeezed light
beams of ∼ 9 dB and ∼ 10 dB were generated from a DOPA with a PPKTP (periodically poled
KTiOPO4) crystal and a monolithic DOPA made by MgO:LiNbO3 crystal, respectively, based
on some technical improvements [21, 22]. It is exciting that CV four-mode cluster states with
the multi-mode quadrature correlations of ∼ 6 dB below the QNL have been experimentally
observed recently [23]. In the system of Ref. [23], the four initial single-mode squeezed states
were generated from four DOPOs pumped by a Ti:sapphire laser. However, the correlations
of EPR beams from NOPAs still keep at ∼ 4 dB so far. Under the motivation of the great
achievement on DOPAs, we followed the ideas in Ref. [21, 22] to implement some technical
improvements on the system for EPR entangled state generation from a NOPA. At first, the
amplitude and phase noises of the pump laser of the NOPA were reduced to the QNL level by
using a specifically designed mode cleaner (MC). Second, the phase fluctuations in all phase
locking systems were controlled detailedly. Based on above improvements the quantum corre-
lations of quadrature components between EPR entangled beams generated from a NOPA were
increased from ∼ 4 dB to ∼ 6 dB below the QNL. The experiment results show that there is
potential to further enhance the CV entanglement of output optical beams from NOPAs.

2. Experimental setup

The schematic of the EPR entangled state generation system is shown in Figure 1. The laser is
a continuous wave intra-cavity frequency-doubled and frequency stabilized Nd:YAP/KTP (Nd-
doped YAlO3 perovskite / potassium titanyl phosphate) laser (Yuguang Co. Ltd., F-VIB). The
harmonic wave of 2 W at 540 nm and the fundamental wave of 0.8 W at 1080 nm are generated
simultaneously from the laser. The output green and infrared lasers are separated by a mirror
coating with high reflectivity for 540 nm and high transmission for 1080 nm, and then are
used as the pump field and the injected signal of the NOPA, respectively. The traveling-wave
resonator placed in the laser beam of 1080 nm serves as the optical low-pass filter of noises and
the spatial mode cleaner (MC1). The finesse and the linewidth of MC1 for 1080 nm are 700 and
1 MHz, respectively. An important improvement with respect to our previously experimental
system [4, 15] is that a mode cleaner (MC2) with a finesse of 1000 and linewidth of 600 kHz for
540 nm is added in the pump laser before the NOPA. MC2 is also a traveling-wave resonator
consisting of three mirrors with the total cavity length of 520 mm. Both MC1 and MC2 are
temperature-controlled to improve the mechanic stability. The MC2 is adjusted to resonating
with the second harmonic laser field via a Pound-Drever-Hall locking scheme with a phase
modulation frequency at 5.8 MHz [24]. We found that MC2 not only can significantly improve
the quality of spatial distribution of the pump laser but also can reduce its phase fluctuation.

The NOPA consists of an α-cut type-II KTP (3×3×10 mm3) crystal and a concave mirror.
The front face of KTP is coated to be used as the input coupler (the transmission 99.8% at 540
nm wavelength and 0.04% at 1080 nm) and the other face of which is coated with the dual-band
antireflection at both 540 nm and 1080 nm. A concave mirror of 50 mm curvature radius, which
is coated with transmission T = 5.2% at 1080 nm and high reflectivity at 540 nm, is used as the
output coupler of the EPR beams at 1080 nm. The measured finesse at 1080 nm is 117, so the
intra-cavity loss is L = 0.17%. The cavity length of the NOPA is 54 mm and the waist size radius
of the infrared field at the input face of KTP crystal is approximately 38 μm. The concave mirror
is mounted on a piezoelectric transducer (PZT) for locking actively the cavity length of NOPA
on resonance with the injected signal at 1080 nm via a Pound-Drever-Hall locking scheme with
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Fig. 1. (Color online) Schematic of the experimental setup. MC1-2: mode cleaner, PZT:
pieoelectric transducer, Servo: servo amplifier circuit for feedback system, EOM: electro-
optical modulator, HWP: half wave-plate, NOPA: nondegenerate optical parametric am-
plifier, PBS: polarization beamsplitter, TMHD: two-mode homodyne detector for continu-
ous variable entanglement, PD1-2: photodiode detector (ETX500 InGaAs), RF: radio fre-
quency power splitter, ⊕: positive power combiner; �: negative power combiner, SAs:
spectrum analyzers.

the phase modulation frequency of 78 MHz [24]. The temperature of KTP crystal are carefully
controlled at 63◦C to satisfy the type-II phase match condition. Through a parametric down
conversion process of type-II phase match, a bright EPR beam with anticorrelated amplitude
quadratures and correlated phase quadratures can be produced from a NOPA operating in the
state of deamplification, where the relative phase between pump field and the injected signal is
locked to π [4]. The correlation variances of amplitude (X̂) and phase (Ŷ ) quadratures of the
two EPR beams â and b̂ are given by 〈δ 2(X̂a + X̂b)〉 = 〈δ 2(Ŷa − Ŷb)〉 = 2e−2r, where r is the
correlation parameter which depends on the strength and the time of parametric interaction in
NOPA [8]. The values of r = 0 and r → +∞ correspond to no correlation and ideal correlation,
respectively. The EPR beams, which have identical frequency with the injected signal and the
orthogonal polarization with each other, are separated by a polarization beam splitter (PBS).
The quantum correlations between amplitude and phase quadratures of the two EPR beams are
measured by a two-mode homodyne detector (TMHD) for continuous variable entanglement
[25], which consists of two PBS, a half wave-plate (HWP), two ETX-500 photodiode detectors
(PD1 and PD2) and two radio frequency power splitters (RFs). The detector requires to combine
the two entangled optical modes on a beamsplitter, thus it is not able to be used for verifying the
entanglement of two spatially separated modes and also can not be applied in the measurement
of the squeezed vacuum states due to that it can only work with bright signal and idler beams.
Using a PZT placed in one of the detected two beams, we lock the relative phase between
two EPR beams to π/2. The output photo-currents from the radio frequency power splitter
are combined by the positive power combiner (⊕) and the negative power combiner (�) to
obtain the noise powers of amplitude sum and phase difference, respectively. Then they are
recorded by spectrum analyzers 1 and 2, respectively. To determine the corresponding QNL,
we blocked the pump field of NOPA and locked the NOPA to resonate with the injected seed
light. Adjusting the power of the injected seed light to make the intensity of the output coherent
state at 1080 nm exactly equals that of the generated entangled state, in this case the measured
variances are the corresponding QNL.
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Fig. 2. (Color online) The measured noise powers of amplitude (a) and phase (b) quadra-
tures of pump laser. Black lines: QNL, red lines: noise of pump laser with MC2, blue lines:
noise of pump laser without MC2. Insets: the noises of amplitude (a) and phase (b) quadra-
tures at 2 MHz. The parameter of spectrum analyzer: RBW: 30 kHz, VBW: 100 Hz.

3. Experimental results and discussion

To analyze the effect of the pump noises we measured the amplitude and phase noise power
spectra of the pump laser at 540 nm with and without the use of MC2, which are shown in Fig.
2(a) and (b) respectively. The amplitude (a) and the phase (b) noises in Fig. 2 were measured
by another balanced homodyne system, which is not shown in Fig. 1. The used laser powers
for the local oscillation beam and the signal beam for the homodyne measurement are 5.7 mW
and 30 μW, respectively. The measurements for both cases with and without the use of MC2
were implemented before NOPA. The photodiode used in the balanced homodyne system is
S5973-02 (Hamamatsu). In the measurements, the noises of the used local beams have been
filtered to the QNL and the resolution bandwidth (RBW) and video bandwidth (VBW) are 30
kHz and 100 Hz, respectively. In Fig. 2, the black, red and blue lines correspond to the QNL,
the noise power of the output coherent state with and without the use of MC2, respectively. We
can see that if MC2 is not used both amplitude and phase noises are higher than the QNL from
1.5 MHz to 4 MHz. These excess noise in the pump laser come from the relaxation oscillation
of laser and they decrease along with the increase of the analysis frequency gradually to the
QNL after 4 MHz. The noise levels of amplitude and phase quadratures of the pump laser are
0.5 dB and 1 dB above the QNL at 2 MHz, respectively [see the insets in Fig. 2(a) and (b)].
After the use of MC2, the amplitude and phase noises are reduced to the QNL at 2 MHz, where
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Fig. 3. (Color online) The measured noise powers of amplitude sum (a) and phase differ-
ence (b) at 2 MHz. The parameter of spectrum analyzer: RBW: 30 kHz, VBW: 100 Hz.

the correlation variances will be measured.
It has been proved that the relative phase fluctuations in homodyne measurement significantly

influence the measured correlations [21]. To reduce the relative phase fluctuations the stack PZT
(Piezomechanik Gmbh, HPSt) is chosen and the electronic feedback system is optimized. At
first, the modulation frequency and the modulation depth are adjusted to give an error signal
with higher signal-to-noise ratio. Then a low noise highvoltage amplifier (Yuguang Co. Ltd.
YG2009A-350V) with a lower output voltage noise of 6 mVpp is used for amplifying the error
signal. After these improvements, the phase fluctuation of the phase locking system reach 1.8◦.

To produce the entangled states of light with anticorrelated amplitude quadratures and corre-
lated phase quadratures, the NOPA is pumped with a green laser of 170 mW which is 60 mW be-
low the oscillation threshold of 230 mW and is operated at deamplification [4, 15]. In this case,
the intensity of the output EPR entangled beams is ∼ 80 μW and the parametric gain is g = 25.
The escape efficiency and the cavity linewidth of the NOPA are ηesc = T/(T + L) = 96.8%
and Δν = 23.7 MHz, respectively. The detection efficiency and the mode-matching efficiency
of the detection system are 90% and 99.9%, respectively.

The measured noise powers of the amplitude sum (a) and the phase difference (b) of the
generated EPR beams are shown in Fig. 3. Pairs of QNLs, correlated noise and electronic
noise are measured simultaneously by two spectrum analyzers with the following parameters:
measurement frequency of 2 MHz in zero span mode, RBW of 30 kHz, and VBW of 100 Hz.
Trace (1) is the QNL, which corresponds to the noise level of coherent state with a power of 80
μW. Traces (2) in Fig. 3(a) and (b) are the measured correlation variances of the amplitude sum
〈δ 2(X̂a + X̂b)〉 and the phase difference 〈δ 2(Ŷa − Ŷb)〉 respectively, which are 6.08± 0.18 dB
and 6.22±0.16 dB below the corresponding QNL. The electronic noise of detector [trace (3)] is
approximately 11 dB below the QNL. Considering the influence of electronics noise, the actual
quantum correlation should be 〈δ 2(X̂a + X̂b)〉 = 7.30± 0.18 dB and 〈δ 2(Ŷa − Ŷb)〉 = 7.50±
0.16 dB below the corresponding QNL. The generated bright EPR entangled beams satisfy the
inseparable criteria [26]: 〈δ 2(X̂a + X̂b)〉+ 〈δ 2(Ŷa −Ŷb)〉 = 0.485 < 2, which corresponds to the
observed entanglement of 6 dB without subtracting electronics noise.

In most theoretical discussions the noises of the pump lasers of NOPA are assumed at the
QNL without excess noises. However, in practical cases the excess noises usually exist in the
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pump lasers which will enter in the output fields of NOPA during the parametric conversion
and thus decrease its entanglement. Of course, the factors limiting entanglement in NOPA de-
vices are of variety. Generaly, the entanglement from NOPA are mainly limited by the quality
of nonlinear crystal (nonlinear coefficient and losses), escape efficiency and cavity linewidth of
NOPA, detection efficiency, mode-matching efficiency of detection system, and phase fluctua-
tion of phase locking system [21]. Towards further increasing the entanglement for our system,
the currently limiting factors mainly are the lower escape efficiency of the optical cavity of the
NOPA and the lower detection efficiency of the detection system. If we increase the escape
efficiency from present 96.8% to 98.6% (T = 12%) and the detection efficiency from present
90% to 99%, over 10 dB entanglement will be expected. Besides, observing high entanglement
the electronic noise background of the detection system has to be reduced to a large extent, for
that the present TMHD should be replaced by the normal balanced homodyne detector [14]. At
last, we should mention that the infinite entanglement can not be obtained because it requires
infinite energy [27].

4. Conclusion

For the conclusion, we obtained CV optical entangled states with amplitude and phase quadra-
ture quantum correlations of ∼ 6 dB, which are the highest correlations generated from NOPA
devices so far to the best of our knowledge. Comparing with our previous NOPA systems
[4, 15], two technical improvements are made: 1. Both amplitude and phase noises of the pump
laser of NOPA are reduced to the QNL level with a suitable mode cleaner. 2. The relative phase
fluctuations of phase locking systems are minimized. Our experiment shows that the implemen-
tation of NOPAs on entanglement generation can be significantly enhanced by means of some
technical improvements on the pump laser and the phase locking systems even using the same
NOPA configuration and nonlinear crystal.
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