文章编号: 0258-7025(2010)05-1166-06

紧凑稳定的可调谐钛宝石激光器

卢华东苏静 李凤琴 王文哲 陈友桂 彭堃 墀 (山西大学光电研究所量子光学与光量子器件国家重点实验室,山西太原 030006)

摘要 通过对钛宝石激光器谐振腔的像散补偿、稳区、模式匹配和调谐元件设计等问题的分析,设计了短腔长、稳定性好的连续单频可调谐钛宝石激光器。利用自行研制的4W连续单频绿光激光器作为抽运源,在波长为780 nm 处获得了670 mW的连续功率输出,其长期功率稳定性优于 $\pm 0.4\%$,输出激光的光束质量因子 $M^2 < 1.1_{\circ}$ 利用自行设计的锁相环路和电子伺服系统(PI电路)对激光器进行锁定,锁定后在整个波长调谐范围(750~810 nm),钛宝石激光器10 s内的频率稳定性均优于 ± 188 kHz, 15 min内的频率稳定性优于 ± 3.28 M Hz。 关键词 激光器;钛宝石激光器;稳频;单频;可调谐

中图分类号 TN 248.1 文献标识码 A doi: 10.3788/CJL20103705.1166

Compact, Stable, Tunable Ti Sapphire Laser

Lu Huadong Su Jing Li Fengqin Wang Wenzhe Chen Yougui Peng Kunchi (State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,

Shanxi University, Taiyuan, Shanxi 030006, China)

Abstract By implementing astigmatism compensation of the laser resonator: selecting stable operation conditions as well as optimizing the mode match between light fields and tuning elements we design and build a stable single frequency continuous-wave (CW) all-solid-state Ti⁺ sapphire laser with short cavity length. The pump source is a homemade CW single frequency green laser. Under the pump power of 4 W, the output power of 670 mW at the wavelength of 780 nm is obtained. The intensity fluctuation of the output laser is less than $\pm 0.4\%$ during 1 h, and the beam quality factor $M^2 < 1.1$. After the laser resonator is locked on a confocal reference cavity with an electronic servo-system, the frequency stabilities are better than ± 188 kHz and ± 3.28 MHz over 10 s and 15 min respectively in the totally tunable range from 750 nm to 810 nm.

Key words lasers, Ti'sapphire laser, frequency stabilization; single frequency; tunable

1 引 言

掺钛蓝宝石激光器的激光输出光谱覆盖了 700~1000 nm的红光和近红外波段^[1],是迄今为止 调谐范围最宽的固体激光器。作为原子冷却与原子 俘获的优质光源,连续单频钛宝石激光器在冷原子 物理以及量子光学研究中发挥着重要的作用。其中 780 nm和795 nm激光波长对应于铷原子跃迁线,可 以用来俘获铷原子并将之冷却;同时,通过光学参量 振荡器(OPO)技术也可将780 nm激光下转换,获得 1560 nm 纠缠光束,此波长位于光通信的第三个窗口,与当前的通信网络系统匹配兼容,可用于量子保密通信的研究。

1988年, Schulz^[2] 实现了氩离子抽运下连续钛 宝石激光器的单频运转, 其波长调谐范围为 750~ 850 nm, 在自由运转的情况下获得的10 s内的频率 稳定性优于2 MHz。1991年 Harrison 等^[3]利用腔 内倍频的 Nd [:]YAG 激光器作为抽运源获得功率仅 为150 mW 的全固态钛宝石激光器。1996年, Tsunekane 等^[4]利用6.3 W的单横模绿光激光器作

收稿日期: 2009-08-09; 收到修改稿日期: 2009-08-30

基金项目:国家自然科学基金创新研究群体科学基金(60821004)和山西大学博士启动基金资助课题。

作者简介: 卢华东(1981—), 男, 博士研究生, 主要从事全固态可调谐激光器器件方面的研究。E-mail: lu_sxu @163. com 导师简介: 彭堃墀(1936—), 男, 中国科学院院士, 主要从事量子光学和固体激光器器件方面的研究。

E-mail: kcpeng @sxu. edu. cn

为钛宝石激光器的抽运源得到线宽小于5 M Hz的激 光输出。2002年, Cummings等^[5]利用注入锁定的 方法得到1 ₩ 的全固态连续钛宝石激光器。2005 年, Cha 等^{[9} 在 Verdi 作为抽运源的情况下, 利用注 入锁定的方法将钛宝石激光器加以锁定,经锁定后, 其频率稳定性优于47.8 MHz(4 h),但其波长调谐 范围仅为50 GHz(小干0.1 nm)。针对原子冷却和量 子信息存储研究的特殊要求,本文通过理论计算,减 少调谐元件及采用短腔长设计研制了在 750~ 810 nm范围内波长连续可调谐的窄线宽、稳定性好 的钛宝石激光器。在充分考虑钛宝石激光腔的模匹 配及像散补偿后设计了腔长仅为544 mm的四镜环 行谐振腔结构 通过在腔内插入光学单向器使得钛 宝石激光器连续单频输出。利用两片不同厚度的双 折射滤波片作为调谐元件,使得激光输出线宽被压 窄的同时,在750~810 nm范围内连续可调。通过 比较单横模与单频连续绿光激光器分别作为抽运源 获得的钛宝石激光输出功率及稳定性曲线,证明了 单频绿光激光器抽运的钛宝石激光器的效率以及稳 定性都要优于单横模激光器。当单频绿光激光器的 功率为4 W时,在780 nm处钛宝石激光器输出功率 达670 mW。利用改进后的电子伺服系统(PI电路), 使激光器锁定在一个精密控温,机械稳定的法布里-珀罗(F-P)参考腔上,得到激光器的频率稳定性优 于 $\pm 188 \text{ kHz}$ (10 s), 功 率 稳 定 性 优 于 $\pm 0.4\%$ (1 h), 光束质量 M² < 1.1。

系统设计 2

全固态连续单频钛宝石激光器包括激光谐振腔 和稳频系统两部分。

2.1 谐振腔

单频环形腔钛宝石激光器的结构如图1所示, 谐振腔采用四镜环形谐振腔设计, M₃和 M₄ 是曲率 半径均为100 mm的两凹面镜, 它们之间的距离为 l1, 夹角为 θ。其中 M3 作为输入镜, 镀有对532 nm 增透和780 nm 高反膜, M4 镀有对780 nm 高反膜。 M₃, M₄ 与钛宝石晶体端面之间的距离为 l₂。 M₅, M_6 为平面镜, M_5 镀有对780 nm 高反膜, 并与压电 陶瓷(PZT)相连接, M₆为对780 nm有一定透射率 的输出镜。同时,在谐振腔中加入单向器 OD^[7,8] 及 标准具 Etalon, 以使激光器单频运转。

增益介质钛宝石晶体的尺寸为 ⁴⁴ mm × 20 mm, 对532 nm波长的吸收系数为1.05 cm⁻¹, 品 质因数4F20Ms/值大于A235。r两端面构采用布氏角切blishing House. All rights reserved.

图 1 稳频钛宝石激光器的腔型结构示意图

Fig. 1 Schematic of the Ti sapphire laser of frequencystabilized operation

割,晶轴垂直于棒的轴线,并在由两个通光面的法线 所决定的平面内^[9]。布氏角切割的钛宝石晶体置于 腔中,圆截面的高斯光束变为椭圆截面,从而导致腔 模在子午面和弧矢面内产生一个光程差。当这个光 程差足够大时,谐振腔可能处于非稳定状态。采用 如图1所示的四镜环形谐振腔结构,用两个离轴放 置的凹面镜 (M_3, M_4) 即可补偿腔内以布氏角插入 的增益介质钛宝石晶体引起的腔模的像散。利用公 式[10,11]

$$R\sin \theta_{\rm l} \tan \theta_{\rm l} = \frac{(n^2 - 1)l}{n^3}, \qquad (1)$$

式中两凹面镜的曲率半径 R = 100 mm,晶体长度 l=20 mm, 折射率 n=1.76时, 可以知道两凹面镜的 折叠角 θ_1 (凹面镜的法线和光线之间的夹角)为 15.8°.

在环形谐振腔的设计中,除了要考虑到像散补 偿问题,还需要考虑谐振腔的稳区和模式匹配问题。

http://www.cnki.net

利用 *ABCD*¹¹³ 矩阵,可以计算出钛宝石激光器谐振 腔总长度不同时,激光器的稳区以及振荡光在钛宝 石晶体中心处的腰斑大小与 /1 的关系如图 2,3 所 示。

图 3 不同腔长下,振荡光在钛宝石晶体中心处腰斑随 两凹面镜之间距离 /i 的变化关系

Fig. 3 Relationship between waist at the center of the Ti sapphire crystal and distance between two concave mirrors with different cavity lengths l₁

从图 2,3 中可以看到,谐振腔的长度越短,激光 器的稳区范围越宽,振荡光在钛宝石晶体中心处的 腰斑也越大,从而有效地增大了振荡光在钛宝石晶 体中的模体积,提高晶体的利用效率。因此,在保证 钛宝石激光器单频输出并且在一定波长范围内连续 调谐的前提下要尽量减少腔内元件数目,缩短激光 器腔长,以提高激光器的转换效率和稳定性。实验中 钛宝石激光器的腔长被缩短至544 mm,只相当于现 在使用的连续单频钛宝石激光器腔长的一半^[2-13]。

图 4 为利用补偿后的折叠角以及 ABCD 矩阵 计算得到的子午面和弧矢面上的振荡光斑束腰、稳

图 4 补偿后得到的腔长为 500 mm 的稳区和腰斑曲线

Fig. 4 Curve of stabilization range and waist of the laser with cavity length of 500 mm when it is compensated 区随 h 的变化关系。从图 4 中可以看出,利用(1) 式计算得到的补偿角只能使子午面和弧矢面在激光 器稳区的下沿重合。为了保证激光输出的稳定性, 激光器要尽量工作在稳区的中央。因此选择 h 为 51 mm,此时振荡光在钛宝石晶体中心处束腰半径 约为42 mm。

为了使抽运光和振荡光在整个增益介质钛宝石 晶体中最大程度地交叠,振荡光斑与抽运光斑的尺 寸比例应大致为1.67^[14]。抽运源输出的激光经过两 个导光镜反射后,首先经由 fi 准直为平行光,然后 再经 f2 聚焦到约25 µm后注入到激光谐振腔中。 通过调节谐振腔前面插入的532 nm半波片来调整 抽运光的偏振方向使得增益晶体 Ti ⁱAl2O3 能够充 分吸收抽运光的能量。

在大多数有关钛宝石激光器波长调谐的研究报 道中,为了达到更宽的调谐范围,无论调谐元件选取 的是双折射滤波片(BF)还是棱镜均需三片以上配 合使用。针对原子冷却与量子信息存储研究中对钛 宝石激光器的特殊要求,即在满足一定的可调谐范 围(覆盖 780~795 nm),采取减少调谐元件,改变元 件参数的设计,进而压窄线宽,增加钛宝石激光器件 的稳定性。实验中,利用光轴与晶体表面的夹角为 34.2°,旋转角为 51°,厚度分别为5 mm和 10 mm的 两片双折射滤波片作为调谐元件,根据透射率公 式^[15~17] 得到了如图 5 所示的透射率随激光波长变 化的曲线。可以看到当激光波长为780 nm时,透射 率达到99.92%。

- 图 5 两片组合双折射滤光片在 760~800 nm 范围内的 波长调谐特性曲线
 - Fig. 5 Two-plate BF transmission curve

2.2 稳频系统

为了进一步提高钛宝石激光器的稳定性,在钛 宝石谐振腔之外加入了由频标,锁相环路,PI 电路 所组成的稳频系统。其中频标采用共焦 F-P 腔,为

?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

1169

了使其更加稳定,减少频率漂移,在设计制作过程中 共焦 F-P 腔的腔体采用膨胀系数极低的殷钢管制 成,同时使用精密控温系统对其控温¹¹⁸。将共焦 F-P腔的一个腔镜固定在 PZT 上,当激光输出的一 小部分注入到此参考腔中时,其透射的信号经探测 器探测转换为电信号,然后通过自行设计的锁相环 路结合 PI 电路,适时地跟踪激光器频率与参考 F-P 腔频率之间的误差信号,并将误差信号转变为执行 信号反馈给激光器的 PI 电路,通过控制系统自动调 节腔长,使激光工作频率稳定地在 F-P 腔的标准频 率上运转。

3 实验结果

在实验中,为了比较钛宝石激光器的抽运源模 式对激光输出功率以及稳定性的影响,自制了两台 全固态连续绿光激光器^[19,20] 作为钛宝石激光器的 抽运源,其中一台以单横模模式运转,而另一台以单 频即单纵模的模式运转。单横模绿光激光器采用的 是三镜折叠腔结构,最高输出功率12.9 W,其功率 稳定性为±0.83%;而单频的绿光激光器采用四镜 环形腔结构,在 LD 抽运功率为30 W时,获得了最 高功率达4 W的高偏振度的单频绿光激光输出,其 功率稳定性为±0.28%。

根据前面分析计算得到的钛宝石激光器腔型以 及各元件参数,当输出镜的透射率为2.6%时,利用 单频绿光激光器作为抽运源得到的输出功率曲线如 图 6 曲线 a 所示,可以看到其阈值功率为1.9 W,在 抽运功率为4 W 时,最大输出功率670 mW,斜率效 率31.9%。图 6 曲线 b 为单横模绿光激光器抽运钛 宝石激光器得到的输出功率曲线,其阈值功率为

?1994-2015 China Academic Journal Electronic Publi

5. 61 W, 在抽运功率为8. 89 W 时, 最大输出功率达 到906 mW, 斜率效率为26. 3%。同时分别测试了两 种激光器作为抽运源时钛宝石激光输出的长期功率 稳定性曲线, 如图 7 所示。很明显, 利用单频绿光激 光器作为抽运源所得到的钛宝石激光输出更加稳 定, 其30 min内的稳定性优于 $\pm 0.4\%$, 而利用单横 模绿光激光器作为抽运源所得到的钛宝石激光输出 在30 min内的稳定性为 $\pm 1.9\%$ 。利用 Spiricon 公司 生产的 M²-200 分析仪得到了激光器在最大输出功 率时的光束质量因子 $M^2 < 1.1$, 像散仅为0.04。通过 调节调谐元件即双折射滤波片组的角度, 使输出激 光波长在 750~810 nm 范围内连续可调, 输出波长 与功率关系曲线如图 8 所示。

图 7 钛宝石激光器 30 min 内的输出功率稳定性曲线 Fig. 7 Power fluctuation of the CW Ti⁺sapphire laser in 30 min

图 8 钛宝石激光器输出功率随波长变化的关系曲线 Fig. 8 Tuning curve for the single-frequency CW Ti⁺sapphire laser

激光器经稳频系统被锁定在参考 F-P₁腔的中 心频率上。图 9(a)是鉴频曲线, 峰峰值间频率宽度 为 ±3.75 MHz。图 9(b)是自由运转状态下记录到 的 F-P₁ 的透射强度起伏, 透射强度最大起伏相应于 鉴频曲线峰值之间的频率宽度, 由此可知, 1 mV起 伏对应于375 kHz的频率起伏。 图 9(c)是激光器锁 定后透射强度最大起伏所对应的频率宽度,从结果 中可 以 知 道,激 光 器 锁 定 后 的 频 率 起 伏 为 ±188 kHz^[21~23]。激光器在自由运转和锁定情况下 的频率漂移如图 9 (d), (e)所示,可以看到,自由运 转情 况 下,10 s 内 激 光 器 的 频 率 稳 定 性 优 于 \pm 3.75 MHz, 而在激光器被锁定以后, 10 s内激光 器的频率稳定性优于 \pm 188 kHz。最后, 还测试了激 光器被锁定后的长期频率稳定性, 如图 9 (f)所示, 可以知道在 15 min内, 激光器的频率稳定性优于 \pm 3.28 MHz。

图 9 钛宝石激光器的频率稳定性。(a) 鉴频曲线;(b) 自由运转时激光器的强度波动;(c) 激光器锁定后的强度波动; (d) 自由运转时 10 s 的频率漂移;(e) 锁定后 10 s 的频率漂移;(f) 锁定到参考腔上后 15 min 的频率漂移

Fig. 9 Frequency stabilization of the laser. (a) the curve of frequency discrimination; (b) the intensity fluctuation when the laser is freely running; (c) the intensity fluctuation when the laser is locked to the reference cavity; (d) the frequency drift of the laser when it is freely running (10 s); (e) the frequency drift when it is locked to the reference cavity (10 s); (f) the frequency drift when it is locked to the reference cavity (15 min)

4 结 论

报道了连续输出的全固态可调谐钛宝石激光 器。通过对钛宝石激光器谐振腔的像散补偿、稳区、 模式匹配和调谐元件设计等问题的分析,在保证激 光器单频可调谐运转下缩短了激光器腔长,减少了 调谐元件。通过比较单横模与单频绿光激光器分别 作为抽运源得到的钛宝石激光器输出功率曲线以及 长期稳定性曲线,选用了能够使钛宝石激光器输出 稳定性更高的4W连续单频绿光激光器作为抽运 源,得到了输出功率达670mW的连续单频可调谐 钛宝石激光器,其长期功率稳定性优于 $\pm 0.4\%$,输 出激光的光束质量因子 $M^2 < 1.1$ 。利用自主设计的 锁相环路和电子伺服系统对激光器进行锁定,经锁 定后在10 s内,其频率漂移优于 ± 188 kHz; 15 min 内频率稳定性优于 ± 3.28 MHz。

参考文献

 P. F. Moulton. Spectroscopic and laser characteristics of Ti⁺ Al₂O₃[J]. J. Opt. Soc. Am. B, 1986, 3(1): 125~133
 Peter A. Schulz. Single-frequency Ti⁺Al₂O₃ ring laser [J].

- James Harrison, Andrew Finch, Peter F. Moulton et al.. Low-threshold, CW, all-solid-state Ti ¹Al₂O₃ laser [J]. Opt. Lett., 1991, 16(8): 581~583
- 4 Masaki Tsunekane, Noboru Taguchi. High-power, efficient, low-noise continuous-wave all-solid-state Ti 'sapphire laser
 [J]. Opt. Lett., 1996, 21(23): 1912~1914
- 5 Elizabeth A. Cummings, Malcolm S. Hicken, Scott D. Bergeson. Demonstration of a 1-W injection-lock ed continuous wave titanium; sapphire laser [J]. Appl. Opt., 2002, 41(36); 7583~7587
- 6 Yong Ho Cha, Yong Woo Lee, Kwang-Homko et al.. Development of a 756 nm, 3 W injection-locked CW Ti 'sapphire laser [J]. Appl. Opt., 2005, 44(36): 7810~7813
- 7 Thomas F. Johnston, Willian P. Proffitt. Broadband Optical Diode for a Ring Laser [P]. United States Patent 4272158, 1979

8 Wang Junmin, Liang Xiaoyan, Li Ruining. A broad-band optical diode used in a tunable Ti⁺Al₂O₃ ring laser [J]. *Laser & Infrared*, 1993, 21(1): 31~33 王军民,梁晓燕,李瑞宁. 一种可用于可调谐环行Ti⁺Al₂O₃激 光器的宽带单向器[J]. 激光与红外, 1993, 21(1): 31~33

- 9 Sun Yan, Lu Huadong, Su Jing. Continuous-wave single-frequency, all-solid-state Ti ¹ Al₂O₃ laser [J]. Acta Sinica Quantum Optica, 2008, 14(3): 344~347
 孙 燕, 卢华东, 苏 静, 全固态单频钛宝石激光器[J]. 量子光 学学报, 2008, 14(3): 344~347
- 10 Herwig W. Kogelnik, Erich P. Ippen, Andew Dienes et al.. Astigmatically compensated cavities for CW dye lasers [J]. IEEE J. Quantum Electron., 1972, QE-8(3): 373~379

IEEE J. Quantum Electron., 1988, **QE-24**(6): 1039~1044 ?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net mode calculations [J] . *Appl. Opt.*, 1994, 33(18): 3849~3856
 Lü Baida. Laser Optics [M]. Beijing: Higher Education Press, 2003. 386~388

吕百达. 激光光学[M]. 北京:高等教育出版社,2003.386~ 388

- Wang Junmin, Liang Xiaoyan, Peng Kunchi et al.. CW frequency-stabilized ring Ti 'sapphire laser with four mirrors [J]. Chinese J. Lasers, 1994, A21(10): 773~777 王军民,梁晓燕,彭堃墀等. 四镜环行腔连续稳频钛宝石激光 [J]. 中国激光, 1994, A21(10): 773~777
- 14 Anthony J. Alfrey. Modeling of longitudinally pumped CW Ti⁺ sapphire laser oscillators [J]. IEEE J. Quantum Electron., 1989, 25(4): 760~766
- 15 Xinglong Wang, Jianquan Yao. Transmitted and tuning characteristics of birefringent filters [J]. Appl. Opt., 1992, 31 (22): 4505 ~ 4508
- 16 Zhao Yonghua, Liu Yupu, Zhang Yinghua. Design of BF tunable broadband solid-state lasers [J]. *Chinese J. Lasers*, 1995, A22(9): 641~644 赵永华, 刘玉璞, 张影华. 宽调谐固体激光器的 BF 设计[J]. 中 国激光, 1995, A22(9): 641~644
- 17 Lu Zhangxian, Tang Duoqiang, Hu Hongzhang et al.. Synthetical design of tunable birefringent filters for Ti'sapphire laser [J]. J. Optoelectronics · Laser, 1999, 10(6):498~500 陆樟献,唐多强,胡鸿璋等.用于钛宝石激光器的可调谐双折 射滤波片的综合设计[J].光电子。激光,1999, 10(6):498~ 500

- 18 Fagang Zhao, Qing Pan, Kunchi Peng. Improving frequency stability of laser by means of teperaturo-controlled Fabry-Perot cavity [J]. Chin. Opt. Lett., 2004, 2(6): 334~336
- Li Fengqin, Yu Lin, Shen Yumei *et al.*. All-solid-state CW
 12.9 W TEM₀₀ mode green laser [J]. *Chinese J. Lasers*, 2009, 36(6):1332~1336
 李凤琴,于 琳,申玉梅等.输出功率12.9 W的全固态连续 TEM₀₀模绿光激光器[J]. 中国淡光, 2009, 36(6):1332~1336
- 20 Yaohui Zheng, Huadong Lu, Kunchi Peng et al.. Four watt long-term stable intracavity frequency-doubling Nd 'YVO₄ laser of single-frequency operation pumped by a fiber-coupled laser diode [J]. Appl. Opt., 2007, 46(22): 5336~5339
- 21 K. C. Peng L. A. Wu, H. J. Kimble. Frequency-stabilized Nd[:]YAG laserwith high output power [J]. Appl. Opt., 1985, 24(7): 938~940
- 22 Chang Dongxia, Liu Xia, Wang Yu *et al.*. All-solid-state CW intracavity frequency-doubled and frequency-stabilized Nd ⁺ YVO₄/LBO red laser [J]. *Chinese J. Lasers*, 2008, 35(3): 323 ~ 327

常冬霞,刘 侠,王 宇等. 连续波 Nd 'Y V 04/LBO 稳频倍频 红光全固态激光器[J]. 中国激光, 2008, **35**(3): 323~327

23 Liu Guohong Li Yongmin, Wang Yaoting et al., All solid state continuous wave stabilized single frequency 1053-nm Nd 'YLF laser [J]. Chinese J. Lasers, 2009, 36(7): 1732~1734 刘国宏,李永民,王垚廷等. 全固态高功率连续单频稳频 1053nm Nd 'YLF 激光器[J]. 中国激光, 2009, 36(7): 1732~1734