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Noise-free frequency conversion of quantum states∗
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In this paper, the frequency conversion of quantum states based on the intracavity nonlinear interaction is proposed.

The fidelity of an input state after frequency conversion is calculated, and it is shown the noise-free frequency conversion

of a quantum state can be achieved by injecting a strong signal field. The dependences of conversion efficiency on the

pump parameter, extra losses and input state amplitude are also analysed.
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1. Introduction

Quantum networks based on atoms and photons
supply a promising method for a large-scale quan-
tum information process,[1] the atoms acting as quan-
tum nodes are used to process and store quantum
states locally,[2,3] and meanwhile the photons serve
as quantum channels to link the separated nodes for
the exchange of quantum information.[4] It is well
known that the transmission wavelengths for pho-
tons in telecommunication optical fibers are 1310 nm
and 1550 nm,[5,6] and the atoms absorb/emit pho-
tons at different wavelengths, e.g. 800 nm for alkaline
atoms,[7] thus an optical frequency conversion inter-
face is needed to couple them in a quantum network.
In this procedure, the quantum state should be main-
tained for faithful quantum frequency conversion.[8]

There are many information-preserving unitary
transformations allowing a nonlinear frequency con-
version via a particle annihilation or creation process,
the optimum candidate is frequency up-conversion
because of the noise-free and 100% conversion
efficiency.[9] Since the conception for noise-free pho-
ton frequency up-conversion was proposed by Kumar
in 1990,[8] it has been developed both for discrete
and continuous variables.[10−13] However, the noise-
free frequency conversion of a quantum state is diffi-
cult to realize in the down-conversion process, because
the process is normally considered as an amplification
process with unavoidable quantum noise.[10] Recently,

the theoretical and the experimental studies on noise-
free parametric amplification of a traveling-wave light
have been developed when spontaneous parametric
down-conversion is pumped by a weak field and in-
jected with a strong signal field,[14,15] this noise-free
down-conversion process is feasible for frequency con-
version of a quantum state.

In this paper, an intracavity scheme with fre-
quency down-conversion as well as up-conversion of
a quantum state are analysed, the condition for con-
version of quantum state is reached. According to the
fidelity, the dependences of conversion efficiency on
pump parameter, extra intracavity losses and input
amplitude are discussed.

2. Theoretical model

The spontaneous photon frequency up and down-
converison processes are depicted in Figs. 1(a) and
1(b). First, if one weak light beam and one strong
light beam respectively with angular frequencies ω1

and ω2 are coupled in a second-order nonlinear crys-
tal to generate a higher frequency ω3 = ω1 + ω2, the
input mode â2 can be treated classically as real am-
plitude E2, thus one obtains[8]

â1(t) = â1(0) cos(χ1t)− â3(0) sin(χ1t), (1)

â3(t) = â3(0) cos(χ1t) + â1(0) sin(χ1t), (2)

where χ1 = χ′E2, and χ′ is a coupling constant that
is proportional to the second-order susceptibility χ(2)
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of the nonlinear material. The quantum states can
realize complete frequency conversion at t = π/2χ1

â1(t = π/2χ1) = −â3(0), (3)

â3(t = π/2χ1) = â1(0). (4)

On the other hand, for frequency down-conversion
process: ω3−ω2 = ω1, the harmonic mode â3 is set as
the strong pump[16] and replaced with real amplitude
E3. The input–output relations are[17]

â1(t) = â1(0) cosh(χ2t)− â+
2 (0) sinh(χ2t), (5)

â2(t) = â2(0) cosh(χ2t)− â+
1 (0) sinh(χ2t), (6)

where χ2 = χ′E3. Although the down-conversion
probability can be greatly enhanced by the field â2,
the appearance of the â+ terms leads to spontaneous
quantum noise.[10] Therefore, it seems that frequency
down-conversion is unsuitable for the frequency con-
version of quantum state. To solve the problem, Ou[14]

proposed a solution by reducing the intensity of pump
field â3 as shown in Fig. 1(b), thus the process be-
comes a frequency converter. The solutions are equal
to Eqs. (3) and (4). Thus, a complete conversion:
â1(0) → â3(t) and â3(0) → −â1(t) with unit conver-
sion efficiency are achieved, perhaps without adding
any excess noise to the output state.

Fig. 1. Intracavity scheme with (a) up-conversion and (b)

down-converison in (c) a single-sided cavity.

When the process of frequency conversion of
quantum state occurs in a cavity (see Fig. 1(c)), could
the quantum state frequency conversion be realized as
it is shown with the spontanous parametric process?
In this case, the equations of motion for the three
modes â1, â2, â3 can be expressed as[18]

τ ˙̂a1(t) = −(γ1 + ρ1)â1(t) + χâ+
2 (t)â3(t)

+
√

2γ1â
in
1 (t) +

√
2ρ1ĉ

in
1 (t), (7)

τ ˙̂a2(t) = −(γ2 + ρ2)â2(t) + χâ+
1 (t)â3(t)

+
√

2γ2â
in
2 (t) +

√
2ρ2ĉ

in
2 (t), (8)

τ ˙̂a3(t) = −(γ3 + ρ3)â3(t)− χâ1(t)â2(t)

+
√

2γ3â
in
3 (t) +

√
2ρ3ĉ

in
3 (t), (9)

where âin
i (i = 1, 2, 3) denote the input amplitude op-

erators; ĉin
i (t) are the vacuum noise terms each corre-

sponding to intracavity loss; τ is the roundtrip time
in the cavity, which is assumed to be the same for all
three fields; γi + ρi (i = 1, 2, 3) are the total loss pa-
rameters with γi being related to amplitude reflection
and transmission coefficients of the coupling mirror,
and ρi representing the extra intracavity losses.

The steady-state equations of Eqs. (7)–(9) are
then obtained as[19]

−(γ1 + ρ1)α1 + χα∗2α3 +
√

2γ1α
in
1 = 0, (10)

−(γ2 + ρ2)α2 + χα∗1α3 +
√

2γ2α
in
2 = 0, (11)

−(γ3 + ρ3)α3 − χα1α2 +
√

2γ3α
in
3 = 0, (12)

where α1, α2, and α3 are the steady state amplitudes
of intracavity modes â1, â2, and â3 respectively.

The two cases αin
3 = 0, αin

1 ¿ αin
2 and αin

1 = 0,
αin

3 ¿ αin
2 are corresponding to the nonsymmetri-

cal pumped up-conversion[20] and the strongly driven
down-conversion process[21] respectively. Considering
that the input mode αin

2 is strong and can be consid-
ered to be undepleted, we have α2 ≈ αin

2 = E. Using
the boundary condition[22] αout

i =
√

2γiαi − αin
i , the

output modes for the up-conversion and the down-
conversion respectively are

αout
3 =

−2
√

γ1γ3χEαin
1

(γ1 + ρ1)(γ3 + ρ3) + (χE)2
, (13)

αout
1 =

2
√

γ1γ3χEαin
3

(γ1 + ρ1)(γ3 + ρ3) + (χE)2
. (14)

The quantum state transfers during intracavity
up-conversion αin

1 → αout
3 and down-conversion αin

3 →
αout

1 are strongly dependent on cavity parameters as
seen in Eqs. (13) and (14). The conversion efficiency
is discussed together with its fluctuations in the fol-
lowing.
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The dynamics of quantum fluctuations can be de-
scribed by linearizing the classical equations of motion
around the stationary solution. Setting

âi(t) = αi + δâi(t),

âin
i (t) = αin

i + δâin
i (t),

ĉin
i (t) = δĉin

i (t), (15)

substituting Eq. (15) into Eqs. (7)–(9), we obtain the
fluctuation dynamics equations

τδȧ1(t) = −(γ1 + ρ1)δa1(t) + χEδa3(t)

+
√

2γ1δa
in
1 (t) +

√
2ρ1c

in
1 (t), (16)

τδȧ3(t) = −(γ3 + ρ3)δa3(t)− χEδa1(t)

+
√

2γ3δa
in
3 (t) +

√
2ρ3c

in
3 (t). (17)

We then obtain the fluctuation of output field at the
analysis frequency ω

δaout
3 (ω)

=
1

(iωτ + γ1 + ρ1)(iωτ + γ3 + ρ3) + (χE)2

×{−2χE
√

γ1γ3δa
in
1 (ω)− 2χE

√
ρ1γ3c

in
1 (ω)

+ [(iωτ + γ1 + ρ1)(− iωτ + γ3 − ρ3)− (χE)2]

× δain
3 (ω) + 2

√
γ3ρ3(iωτ + γ1 + ρ1)cin

3 (ω)}, (18)

δaout
1 (ω)

=
1

(iωτ + γ1 + ρ1)(iωτ + γ3 + ρ3) + (χE)2

×{2χE
√

γ1γ3δa
in
3 (ω) + 2χE

√
γ1ρ3c

in
3 (ω)

+ [(− iωτ + γ1 − ρ1)(iωτ + γ3 + ρ3)− (χE)2]

× δain
1 (ω) + 2

√
γ1ρ1(iωτ + γ3 + ρ3)cin

1 (ω)}. (19)

2.1. Frequency up-conversion process

Using Eq. (18) and the definitions of amplitude
and phase quadrature X = 1/2(a + a+) and Y =
1/2 i(a − a+), the fluctuation spectra of the quadra-
ture components of aout

3 can be written as

δXout
a3

= AδX in
a1

+ BδY in
a1

+
6∑

j=1

CjδLj , (20)

δY out
a3

= −BδX in
a1

+ AδY in
a1

+
6∑

j=1

(−1)jCjδLj . (21)

In Eqs. (20) and (21), Xout
a3

→ Xout, X in
a1
→ Xin,

Y out
a3

→ Yout, and Y in
a1
→ Yin, all the other terms X in

a3
,

Y in
a3

, X in
c3

, Y in
c3

, X in
c1

, and Y in
c1

are taken for vacuum
noise δLj . Assuming that the input state ain

1 is a phase
squeezed state with squeezing degree r, we can obtain

∆2Xout = A2e2r + B2e−2r +
6∑

j=1

C2
j , (22)

∆2Yout = B2e2r + A2e−2r +
6∑

j=1

C2
j . (23)

2.2. Frequency down-conversion process

From Eq. (19) we obtain the fluctuation spectra
of aout

1

δXout
a1

= −AδX in
a3
−BδY in

a3
+

6∑

j=1

DjδLj , (24)

δY out
a1

= BδX in
a3
−AδY in

a3
+

6∑

j=1

(−1)jDjδLj . (25)

In this process, Xout
a1

→ Xout, X in
a3

→ Xin,
Y out

a1
→ Yout, and Y in

a3
→ Yin, assuming that ain

3 is
a phase squeezed state with squeezed degree r, we can
obtain

∆2Xout = A2e2r + B2e−2r +
6∑

j=1

D2
j , (26)

∆2Yout = B2e2r + A2e−2r +
6∑

j=1

D2
j , (27)

where
6∑

j=1

C2
j =

6∑
j=1

D2
j .

3. Results

We introduce the fidelity to discuss the conver-
sion efficiency η, which is propotional to the phase
space overlap between input state and output state,
and written as[23]

F =
2√

(1 + ∆2Xout)
√

(1 + ∆2Pout)

× exp
[
− (xout − xin)2

2(1 + ∆2Xout)

− (pout − pin)2

2(1 + ∆2Pout)

]
, (28)

where ∆2Xout(∆2Pout) and xout(pout) represent the
variance and the average of quadrature amplitudes
(phases) of the output, and xin(pin) are the aver-
age values of quadrature amplitudes (phases) of the
input state. Substitute Eqs. (13), (22) and (23),
and Eqs. (14), (26) and (27) into Eq. (28) respec-
tively, the fidelities of frequency up-conversion and
down-conversion can be obtained and we have Fup =
Fdown = F .
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Here, we discuss the frequency conversion of co-
herent state (r = 0). The relations between the fi-
delity F and the amplitude of input signal αin for dif-
ferent pump parameters are shown in Fig. 2. There
exists a complete conversion condition. When extra
intracavity losses ρ3 = ρ1 = 0 and the amplitude of
pump field E = γ1/χ, the fidelity F = 1. This require-
ment of pump field is on the order of the threshold of
cavity, which is roughly hundreds of milliwatts for a
common PPKTP crystal.

Fig. 2. Curves for fidelity F versus amplitude αin with

γ3 = γ1 and ρ3 = ρ1 = 0.1γ1 for three E values.

Once the pump parameters are given, the fidelity
decreases monotonically with the increase of the am-
plitude of input signal αin. Recall that the assumption
of small input amplitude has been made in almost all
theoretical and experimental work.[11,12] The point is
to what extent the assumption is valid our results give
it a quantitative reference.

The curves for fidelity versus pump parameter for
different input amplitudes are given in Fig. 3. The
results show that with pump parameter increasing,
each fidelity curve first gradually increases and then
decreases, and at χE/γ1 = 1 reaches the highest point.
In addition, for the fidelity with the same pump pa-
rameter, the lower the initial input amplitude is, the
higher the fidelity is.

Fig. 3. Curves for fidelity F versus pump parameter

χE/γ1 with ρ3 = ρ1 = 0.1γ1 and γ3 = γ1 for different

αin values.

Meanwhile, the fidelity versus intracavity loss is
shown in Fig. 4. With the increase of intracavity loss,
the fidelity decreases rapidly so a lossless cavity is al-
ways hoped for.

Fig. 4. Fidelity F versus the extra intracavity losses

ρ3 = ρ1 = ρ with γ3 = γ1 = 0.1, χE/γ1 = 1 and αin = 2.

4. Conclusion

The theoretical analyses of intracavity frequency
conversion of quantum state are given. The depen-
dences of fidelity on the parameters of pump, cavity
losses and amplitude of input state are investigated.
This theoretical discussion provides a possible scheme
for the frequency conversion of quantum state in a
cavity, and may have an application in quantum net-
work.
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