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Quantum frequency up-conversion with a cavity∗
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The quantum state transfer from subharmonic frequency to harmonic frequency based on asymmetrically pumped

second harmonic generation in a cavity is investigated theoretically. The performance of noise-free frequency up-

conversion is evaluated by the signal transfer coefficient and the conversion efficiency, in which both the quadrature

fluctuation and the average photon number are taken into consideration. It is shown that the quantum property can

be preserved during frequency up-conversion via operating the cavity far below the threshold. The dependences of the

transfer coefficient and the conversion efficiency on pump parameter, analysing frequency, and cavity extra loss are also

discussed.
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1. Introduction

Parametric frequency conversion is a full-fledged
technique to generate tunable coherent radiation and
squeezed light,[1,2] it has applications in interferome-
try, accurate measurement, and spectroscopy. Now it
has become a major ingredient in quantum network
for large-scale quantum information process.[3] In a
quantum network, the atoms are used as quantum
nodes to process and store quantum states locally[4]

and the photons acted as quantum channels to link
the separated nodes for the exchange of quantum
information.[5] It is well known that the quantum in-
formation is sensitive to loss and photon whose wave-
length near communication band of optical fibre (be-
tween 1310 nm and 1550 nm) has low loss.[6] However,
the atoms absorb/emit photons at a different wave-
length, e.g. 800 nm for alkaline atoms.[7] Thus a quan-
tum interface is needed to couple the photons of com-
munication band with atoms.[8] Fundamentally, these
endeavours include quantum frequency conversion be-
tween an optical system and atom medium, such a
quantum connectivity can be achieved by optical in-
teraction between photons and atoms[9−12] in cavity
quantum electrodynamics (QED),[7,13] electromagnet-
ically induced transparency (EIT),[14] Raman[15] and
four-wave mixing processes.[16]

Theoretically, the information-preserving unitary
transformation between two different frequencies can
be realized via particle annihilation or creation pro-
cess, the frequency up-conversion was thought to
be optimum candidate because of noise-free and
100% conversion efficiency.[17] Since the conception
for noise-free photon frequency up-conversion was
proposed[8] and experimentally realized,[18] it has been
extensively developed for both discrete and contin-
uous variables.[17,19,20] However, in all of the afore-
mentioned experiments, the up-conversion efficiency
is lower than 50%. Motivated by the results that the
frequency conversion in a resonant cavity has been
demonstrated as an efficient way to enhance the effec-
tive conversion for nonclassical state generation,[21,22]

in our previous work[23] we proposed an intracavity
model of frequency conversion, in which the fidelity
was utilized to measure the quadrature component
variation in phase space. In the present paper, we
present the frequency up-conversion of quantum state
in a second-harmonic-generation (SHG) cavity which
is asymmetrically pumped, both the conversion effi-
ciency and the signal transfer coefficient instead of
the fidelity are used to characterize and quantify the
quantum property of frequency up-conversion process
accurately. The condition for noise-free conversion is
analysed, and the dependences of signal transfer coef-
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ficient and conversion efficiency on pump parameter,
signal mode amplitude, and intracavity loss are also
discussed.

2. Theoretical model

The scheme of frequency up-conversion of quan-
tum state utilizing the intracavity asymmetrically
pumped SHG process is shown in Fig. 1. The system
consists of three modes, which are two subharmonic
modes â1, â2, and harmonic mode â3 with frequen-
cies ω1, ω2, and ω3, respectively, where ω3 = ω1 + ω2

for energy conservation. They are coupled by a χ2

nonlinear crystal inside an optical cavity. Following
the usual terminology, we shall call the fields repre-
sented by these operators signal (â1), pump (â2), and
harmonic (â3), respectively. If a lower frequency quan-
tum state denoted by âin

1 (input signal mode) was con-
verted into a higher frequency output harmonic mode
âout
3 with 100% conversion efficiency in the absence of

noise, then the requirements are

δ2X(Y )out
3 = δ2X(Y )in1 , (1)〈

n̂out
3

〉
=

〈
n̂in

1

〉
, (2)

where δ2X(Y ) is quadrature amplitude (phase) com-
ponent fluctuation, and 〈n̂〉 is the average photon
number of corresponding modes.

Fig. 1. Sketch of intracavity SHG process.

To consider both the quadrature component fluc-
tuation and the average photon number of the quan-
tum state to be converted from a lower frequency ω1

into higher frequency ω3, we use the signal transfer co-
efficient TX(Y ) and conversion efficiency η to evaluate
the performance of the frequency conversion, which
are commonly defined as[16,24]

TX(Y ) =
SNR[X(Y )out

3 ]

SNR[X(Y )in1 ]
, (3)

η =
〈n̂out

3 〉〈
n̂in

1

〉 =
〈(âout

3 )+âout
3 〉〈

(âin
1 )+âin

1

〉 , (4)

where SNR[X(Y )in(out)] is signal-to-noise ratio of the
quadrature amplitude (phase) component of the in-
put (output) mode. For an ideal frequency conversion
of a quantum state, the signal-to-noise ratio on the
output harmonic mode âout

3 is identical to that of the
input signal mode âin

1 , then we have TX(Y ) = 1 and
the average photon number of two modes should be
equal, i.e. η = 1. This is equivalent to maintaining
the same quadrature component distribution in phase
space before and after frequency conversion.

We consider the SHG process in the triply res-
onating optical cavity, which means the two subhar-
monic modes signal (â1 and â2) and the harmonic
mode (â3) simultaneously resonate in the cavity. Un-
der the ideal case with perfect phase matching, zero
detuning, and small loss, the evolution equations for
this system with one mirror used for the input and the
output couplers can be given by[25]

τ ˙̂a1(t) = −(γ1 + ρ1)â1(t) + χâ+
2 (t)â3(t)

+
√

2γ1â
in
1 (t)ei θ10 +

√
2ρ1ĉ

in
1 (t), (5)

τ ˙̂a2(t) = −(γ2 + ρ2)â2(t) + χâ+
1 (t)â3(t)

+
√

2γ2â
in
2 (t)ei θ20 +

√
2ρ2ĉ

in
2 (t), (6)

τ ˙̂a3(t) = −(γ3 + ρ3)â3(t) − χâ1(t)â2(t)

+
√

2γ3â
in
3 (t)ei θ30 +

√
2ρ3ĉ

in
3 (t), (7)

where âin
i (i = 1, 2, 3) denote the input amplitude op-

erators, ĉin
i (t) is the vacuum noise term corresponding

to intracavity losses, and χ is the effective nonlinear
coupling parameter and is proportional to the second-
order susceptibility χ(2) of crystal. The roundtrip
time τ in the cavity is assumed to be the same for
all three fields. The total loss parameter is γi + ρi

(i = 1, 2, 3), where γi is related to amplitude reflec-
tion and transmission coefficient of the coupling mir-
ror, and ρi (i = 1, 2, 3) represents the extra intracavity
loss parameters.

Assuming that the two input subharmonic modes
âin
1 and âin

2 have real amplitudes β1 and β2, the input
harmonic mode âin

3 is the mode in vacuum, the initial
phases are taken to be θ10 = π/4 and θ20 = θ30 = 0,
and the cavity transmission factor and the extra loss
for the two subharmonic modes are the same, then we
have

γ1 = γ2 = γ, ρ1 = ρ2 = ρ.

The steady-state equations of Eqs. (5)–(7) are then
obtained as[26]

−(γ + ρ)ᾱ1ei θ1 + χᾱ∗
2ᾱ3ei(θ3−θ2)

+
√

2γβ1ei π/4 = 0, (8)
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−(γ + ρ)ᾱ2ei θ2 + χᾱ∗
1ᾱ3ei(θ3−θ1) +

√
2γβ2 = 0, (9)

−(γ3 + ρ3)ᾱ3ei θ3 − χᾱ1ᾱ2ei(θ1+θ2) = 0, (10)

where ᾱ1, ᾱ2, and ᾱ3 are the steady-state solutions
of intracavity modes â1, â2, and â3 respectively. The
SHG oscillation threshold εth and steady-state solu-
tions are given by

εth =

√
2(γ + ρ)3(γ3 + ρ3)

χ2γ
, (11)

θ1 = θ3 − θ2 = π/4, (12)

ᾱ1

(
γ + ρ +

2γχ2β2
2

(γ3 + ρ3)[γ + ρ + ᾱ2
1χ

2/(γ3 + ρ3)]2
)

=
√

2γβ1. (13)

Equation (13) is a five-order equation about ᾱ1, only
the numerical solutions can be obtained when the
other physical quantities are given. Substitute the nu-
merical solutions ᾱ1 into Eqs. (8)–(10), ᾱ2 and ᾱ3 can
be given as

ᾱ2 =
√

2γβ2

γ + ρ + ᾱ2
1χ

2/(γ3 + ρ3)
, (14)

ᾱ3 =
−
√

2γχβ2ᾱ1

(γ3 + ρ3)[γ + ρ + ᾱ2
1χ

2/(γ3 + ρ3)]
. (15)

Using the boundary condition[27] ᾱout
i =

√
2γiᾱi−ᾱin

i ,
the conversion efficiency η is given by

η =

∣∣√2γ3ᾱ3

∣∣2
|β1|2

. (16)

The dynamics of quantum fluctuations can be de-
scribed by linearizing the equations of motion around
the stationary solution through setting

âi(t) = ᾱi + δâi(t),

âin
i (t) = ᾱin

i + δâin
i (t),

ĉin
i (t) = δĉin

i (t). (17)

Substituting Eq. (17) into Eqs. (5)–(7), we obtain
the equations as

τδȧ1(t) = −(γ + ρ)δa1(t) + χᾱ2δa3(t) + χᾱ3δa
+
2 (t)

+
√

2γδain
1 (t) +

√
2ρcin

1 (t), (18)

τδȧ2(t) = −(γ + ρ)δa2(t) + χᾱ1δa3(t) + χᾱ3δa
+
1 (t)

+
√

2γδain
2 (t) +

√
2ρcin

2 (t), (19)

τδȧ3(t) = −(γ3 + ρ3)δa3(t) − χᾱ1δa2(t) − χᾱ2δa1(t)

+
√

2γ3δa
in
3 (t) +

√
2ρ3c

in
3 (t). (20)

Using the definitions of the amplitude and phase
quadratures X = a + a+ and Y = (a − a+)/ i, we

obtain the fluctuation of output harmonic mode after
Fourier transform

δXout
3 (ω) =

1
R1

[A1δX
in
1 (ω) + B1δX

in
2 (ω)

+C1δX
in
3 (ω) + D1δX

in
c1(ω)

+G1δX
in
c2(ω) + H1δX

in
c3(ω)], (21)

where

R1 = 2ᾱ1ᾱ2ᾱ3χ
3 + ᾱ2

1χ
2(γ + ρ + iωτ)

+ ᾱ2
2χ

2(γ + ρ + iωτ) − ᾱ2
3χ

2(γ3 + ρ3 + iωτ)

+ (γ + ρ + iωτ)2(γ3 + ρ3 + iωτ),

A1 = −2
√

γγ3χ(ᾱ2γ + ᾱ2ρ + ᾱ1ᾱ3χ + iωτᾱ2),

B1 = −2
√

γγ3χ(ᾱ1γ + ᾱ1ρ + ᾱ2ᾱ3χ + iωτᾱ1),

C1 = 2γ3[γ2 + 2γρ + ρ2 + ᾱ2
3χ

2 + ω2τ2

+ iωτ(2γ + 2ρ)] − R1,

D1 = −2
√

γ3ρχ(ᾱ2γ + ᾱ2ρ + ᾱ1ᾱ3χ + iωτᾱ2),

G1 = −2
√

γ3ρχ(ᾱ2γ + ᾱ1ρ + ᾱ2ᾱ3χ + iωτᾱ1),

H1 = 2
√

γ3ρ3[γ2 + 2γρ + ρ2 + ᾱ2
3χ

2 + ω2τ2

+ iωτ(2γ + 2ρ)],

δY out
3 (ω) =

1
R2

[A2δY
in
1 (ω) + B2δY

in
2 (ω)

+C2δY
in
3 (ω) + D2δY

in
c1 (ω)

+G2δY
in
c2 (ω) + H2δY

in
c3 (ω)], (22)

with

R2 = −2ᾱ1ᾱ2ᾱ3χ
3 + ᾱ2

1χ
2(γ + ρ + iωτ)

+ ᾱ2
2χ

2(γ + ρ + iωτ) − ᾱ2
3χ

2(γ3 + ρ3 + iωτ)

+ (γ + ρ + iωτ)2(γ3 + ρ3 + iωτ),

A2 = −2
√

γγ3χ(ᾱ2γ + ᾱ2ρ − ᾱ1ᾱ3χ + iωτᾱ2),

B2 = −2
√

γγ3χ(ᾱ1γ + ᾱ1ρ − ᾱ2ᾱ3χ + iωτᾱ1),

C2 = 2γ3[γ2 + 2γρ + ρ2 − ᾱ2
3χ

2 − ω2τ2

+ iωτ(2γ + 2ρ)] − R2,

D2 = −2
√

γ3ρχ(ᾱ2γ + ᾱ2ρ − ᾱ1ᾱ3χ + iωτᾱ2),

G2 = −2
√

γ3ρχ(ᾱ1γ + ᾱ1ρ − ᾱ2ᾱ3χ + iωτᾱ1),

H2 = 2
√

γ3ρ3[γ2 + 2γρ + ρ2 − ᾱ2
3χ

2 − ω2τ2

+ iωτ(2γ + 2ρ)].

Substituting δ2X in
i = δ2Y in

i = 1 into Eqs. (21) and
(22), we have[28,29]

TX =
SNR[Xout

3 ]
SNR[X in

1 ]

=
A2

1

A2
1 + B2

1 + C2
1 + D2

1 + G2
1 + H2

1

, (23)

TY =
SNR[Y out

3 ]
SNR[Y in

1 ]

=
A2

2

A2
2 + B2

2 + C2
2 + D2

2 + G2
2 + H2

2

. (24)
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3. Results and discussion

The dependences of signal transfer coefficient
TX(Y ) and conversion efficiency η on pump amplitude
(β2) under different values of input signal amplitude
(β1) are shown in Fig. 2.

Fig. 2. Signal transfer coefficients TX , TY , and con-

version efficiency η versus normalized input pump mode

amplitude (β2/εth) under different values of input signal

mode amplitude β1: (a) 0.01εth, (b) 0.1εth, (c) 0.5εth, (d)

0.95εth with γ = γ3 = 0.1, ρ = ρ3 = 0, χ = 0.001, and

Ω = ωτ/γ = 0.

When the input signal amplitude β1 is far below
the threshold, e.g. β1 = 0.01εth in Fig. 2(a), both
the signal transfer coefficients TX , TY, and conver-
sion efficiency η increase monotonically with the in-
crease of the pump amplitude β2 in the beginning,
and they reach the optimum value 1 simultaneously at
β2 = 0.5εth as shown in Fig. 2(a), which means that
almost ideal noise-free frequency up-conversion from

âin
1 to âout

3 is realized. If the pump amplitude β2 fur-
ther increase, the TX , TY , and η will decrease, which
shows that for the SHG operating below the thresh-
old, an appropriate pump amplitude is needed for fre-
quency conversion. Note that the signal transfer co-
efficient of quadrature amplitude (phase) component
TX(Y ) is always equal to conversion efficiency η under
the condition of Fig. 2(a). When the input signal am-
plitude β1 increases to 0.1εth even 0.5εth (Figs. 2(b)
and 2(c)), both TX and η can approach to 1 almost
at the same time, but the TY drops below 1. Figure
2(d) shows that the TX as well as TY begins to de-
crease when the signal mode operates near but below
the threshold. In this case, the quadrature compo-
nent squeezing of the harmonic mode will influence the
signal transfer coefficient. Accordingly, the similarity
between subharmonic and harmonic modes in phase
space will decrease. This result accords with the con-
clusion obtained in Ref. [30], in which the closer to the
threshold value the excited subharmonic intensity, the
higher the squeezing of the harmonic mode is.[30,31]

When the pump amplitude β2 is set to be 0.5εth,
to what extent does the signal influence the signal
transfer coefficient and conversion efficiency? Fig-
ure 3 shows that when the signal amplitude β1 is weak
enough (≤ 0.1εth), the three parameters keep the same
and are equal to 1. Once the signal amplitude is larger
than 0.1εth, the parameter TY decreases monotoni-
cally, however, the transfer coefficient of quadrature
amplitude component TX and conversion efficiency
η keep constant in the beginning and then decrease
rapidly in this period. So a weaker signal field is suited
for the frequency up-conversion of quantum state.

Fig. 3. Signal transfer coefficients TX , TY , and conver-

sion efficiency η versus β1 with β2 = 0.5εth, γ = γ3 = 0.1,

ρ = ρ3 = 0, χ = 0.001, and Ω = 0.

Figure 4 shows that the signal transfer coeffi-
cient of quadrature components TX and TY versus
normalized analysing frequency Ω when the SHG is
operated below the threshold with β1 = 0.01εth and
β2 = 0.5εth. Obviously, at zero frequency (Ω = 0),
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the maximum signal transfer coefficient is obtained.

Fig. 4. Signal transfer coefficients TX , TY versus nor-

malized analysing frequency Ω with β1 = 0.01εth, β2 =

0.5εth, γ = γ3 = 0.1, ρ = ρ3 = 0, and χ = 0.001.

From the above analyses, it is evident that the
perfect frequency up-conversion of quantum state in
an optical cavity can be easily obtained when the cav-
ity is operated far below the threshold with a weak
signal and strong pump of proper amplitude. Note
that in this discussion, the extra intracavity loss is set
to be ρi = 0 if the unavoidable loss is included, the
signal transfer coefficient for quadrature components
and conversion efficiency for photon number will de-
crease monotonically as shown in Fig. 5. So in order
to achieve a high performance frequency up-conversion
of quantum state, the extra intracavity loss should be
far less than the transmission loss from the coupling
mirror ρi ¿ γi.

Fig. 5. Signal transfer coefficients TX , TY, and con-

version efficiency η versus extra cavity loss ρ = ρ3 with

β1 = 0.01εth, β2 = 0.5εth, γ = γ3 = 0.1, χ = 0.001, and

Ω = 0.

4. Conclusion

The theoretical discussion shows that the noise-
free frequency up-conversion of quantum state with
asymmetrically pumped SHG in cavity can be real-
ized when the cavity operates far below the threshold
with a weaker signal and proper pump amplitude. The
dependences of the signal transfer coefficient and the
conversion efficiency on the parameter of the cavity
are discussed. The quantum state conversion between
different frequencies may have applications in quan-
tum network and quantum computation processes.
The experimental realization of this scheme should be
achieved with the successful SHG technology.

References

[1] Burnham D C and Weinberg D L 1970 Phys. Rev. Lett.

25 84

[2] Liu J H, Liu Q and Gong M L 2011 Acta Phys. Sin. 60

4215 (in Chinese)

[3] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys.

Rev. Lett. 78 3221

[4] Kaler F S, Haffner H, Riebe M, Gulde S, Lancaster G P

T, Deuschle T, Becher C, Roos C F, Eschner J and Blatt

R 2003 Nature 422 408

[5] Wolfgang T and Gregor W 2001 Quantum Inform. Com-

put. 1 3

[6] Li X Y, Yang L, Ma X X, Cui L, Ou Z Y and Yu D Y

2009 Phys. Rev. A 79 033817

[7] Lloyd S, Shahriar M S, Shapiro J H and Hemmer P R

2001 Phys. Rev. Lett. 87 167903

[8] Kumar P 1990 Opt. Lett. 15 1476

[9] Julsgaard B, Sherson J, Cirac J I, Fiurášek J and Polzik
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