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Generation of Enhanced Three-Mode Continuously Variable Entanglement *
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1School of Science, Ningbo University of Technology, Ningbo 315211

2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,
Shanxi University, Taiyuan 030006

(Received 19 October 2010)
The generation of enhanced three-mode continuously variable (CV) entanglement via difference-frequency am-
plification in an optical cavity above the threshold is investigated. The quantum entanglement characteristics
among the pump, signal, and idler beams are demonstrated by applying a sufficient inseparability criterion for
CV entanglement proposed by van Loock and Furusawa. Bright three-mode CV entanglement with different
frequencies can be generated in this simple system when the optical cavity operates above its threshold, and the
best three-mode CV entanglement can be obtained when the pump threshold parameter is modulated at about
𝜎 = 1.3.

PACS: 03.67.Bg, 03.67.−a; 42.65.Yj DOI:10.1088/0256-307X/28/9/090304

Quantum entanglement attracts a good deal of in-
terest since it is the central resource in applications
such as quantum communication and computation.
Multipartite CV entanglement beams with different
frequencies are necessary to connect different physi-
cal systems at the nodes of quantum networks[1] since
multicolor entanglement beams are easy to separate in
the application.[2] It was predicted that two-color CV
entanglement can be produced by a nondegenerate op-
tical parametric oscillator[3] and it has been demon-
strated experimentally below and above the oscilla-
tor threshold.[4,5] Then Villar et al. predicated that
three-color CV entanglement can be generated using
an optical parametric oscillator operating above the
threshold[6] and this scheme has been verified by re-
cent experiments.[2] In fact, when one pump photon is
destroyed, exactly two photons are created, i.e., when
𝑁 pump photons are destroyed, 2𝑁 longer-wavelength
photons are created. Thus the intensities of three
beams, pump, signal and idler are correlated when
the losses and uncertainties are minimized.[7] There
are numerous schemes to produce multicolor CV en-
tanglement, such as cascaded nonlinearities inside an
optical cavity[8−11] and four-wave mixing.[12]

Usually, the parametric process is weak. There-
fore, the difference-frequency amplification is easier to
realize experimentally in comparison with the para-
metric process. In the difference-frequency amplifica-
tion process, a pump photon and an idler photon pro-
duce a signal photon, and the signal and idler beams
are amplified by each other via interaction with the
pump. If one puts the difference-frequency amplifica-
tion inside an optical cavity, the signal and idler beams
are further amplified for the energy transferred from
pump to signal and idler beams duo to the energy
conservation. Thus the intensities of pump, signal,
and idler beams correlate when the losses and uncer-
tainties are minimized, which is similar to the case

of an optical parametric oscillator operating above
the threshold.[2,6] The three-mode CV entanglement
should exist in the difference-frequency amplification
process when considering the quantum characteristics
of the pump. In this Letter, we investigate whether
the enhanced three-mode CV entanglement can indeed
be generated in the difference-frequency amplification
in an optical cavity operated above the threshold.
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Fig. 1. A schematic of the experiment. BS: 50/50 beam
splitter; PPKTP: periodically poled KTiOPO4 crystal
used to produce signal and idler beams; DC: dichroic split-
ter; PBS: polarizing beam splitter; M1 and M2: cavity
mirrors.

Our study is different from the optical parametric
oscillator above the threshold reported in Refs. [2, 6],
which has only one pump entering the optical cav-
ity and the nonlinear process is the parametric down-
conversion. Here we consider two beams, a pump with
frequency 𝜔0 and a weak idler with frequency 𝜔1 enter-
ing an optical cavity. The signal beam with frequency
𝜔2 is generated by the difference-frequency process be-
tween the pump and idler beams (i.e. 𝜔0 = 𝜔1+𝜔2). A
schematic of the experiment can be seen in Fig. 1. Our
experimental scheme is similar to that used in Ref. [2].
However, there is a weak idler beam seed entering the
cavity which is different from the case in Ref. [2]. It
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is well known that the seed can not only enhance the
stability of the cavity, but also increase the nonlinear
conversion efficiency. Therefore, it is easier to be ex-
perimentally realized than the scheme in Ref. [2] and
better enhanced three-mode entanglement can be ob-
tained in our scheme by the difference-frequency gen-
eration process.
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Fig. 2. The minimized values of 𝑉01 and 𝑉12 versus nor-
malized analyzing frequency 𝜔 = 𝜈/𝛾 with 𝛾 = 0.015,
𝛾0 = 0.025, and 𝜎 = 2.

The Hamiltonian of the free modes can be written
as[13]

𝐻𝑓 = ℎ̄Δ0𝛾0𝑎
†
0𝑎0 + ℎ̄Δ1𝛾𝑎

†
1𝑎1 + ℎ̄Δ2𝛾𝑎

†
2𝑎2. (1)

Here we introduce the detuning parameters Δ0 =
𝜔0−𝜛0

𝛾0
, Δ1 = 𝜔1−𝜛1

𝛾 , and Δ2 = 𝜔2−𝜛2

𝛾 ; 𝜛0, 𝜛1,
and 𝜛2 are the quasi-resonant frequencies of the three
modes, respectively; 𝛾0 is the damping rate of 𝜔0. In
this study we use the same damping rate for these
modes (as 𝛾1 = 𝛾2 = 𝛾) for simplicity.

The interaction Hamiltonian is 𝐻𝐼 = 𝑖ℎ̄𝑔(𝑎†1𝑎
†
2𝑎0−

𝑎1𝑎2𝑎
†
0), where 𝑔 is the dimensionless coupling con-

stant. Considering that the system is driven by an
external pump[13] 𝐻𝑒𝑥𝑡 = 𝑖ℎ̄𝜀(𝑎†0 − 𝑎0), where 𝜀 is
taken to be real and positive for definiteness, and
the losses of the three modes are given by Λ𝑖𝜌 =

𝛾𝑖(2𝑎𝑖𝜌𝑎
†
𝑖 − 𝑎†𝑖𝑎𝑖𝜌− 𝜌𝑎†𝑖𝑎𝑖).

The master equation for the density operator 𝜌
of this three-mode system in the interaction picture
reads[14]

𝑑𝜌

𝑑𝑡
= − 𝑖

ℎ̄
[𝐻𝑓 +𝐻𝐼 +𝐻𝑒𝑥𝑡, 𝜌] + (Λ0 + Λ1 + Λ2)𝜌. (2)

When all fluctuations and correlations are ne-
glected, the equations for the mean values of the three

modes are[13−15]

𝑑

𝑑𝑡
𝛼1 = −𝛾(1 + 𝑖Δ1)𝛼1 + 𝑔𝛼*

2𝛼0,

𝑑

𝑑𝑡
𝛼2 = −𝛾(1 + 𝑖Δ2)𝛼2 + 𝑔𝛼*

1𝛼0,

𝑑

𝑑𝑡
𝛼0 = 𝜀− 𝛾0(1 + 𝑖Δ0)𝛼0 − 𝑔𝛼1𝛼2, (3)

where 𝛼*
𝑖 is the complex conjugate of 𝛼𝑖. After intro-

ducing the normalized quantities 𝐴𝑖 = 𝑔𝛼𝑖√
𝛾0𝛾

(𝑖 = 1, 2),
𝐴0 = 𝑔𝛼0

𝛾 , and 𝐸 = 𝑔𝜀
𝛾𝛾0

, Eq. (3) can be rewritten as

1

𝛾

𝑑

𝑑𝑡
𝐴1 = −(1 + 𝑖Δ1)𝐴1 + 𝐴*

2𝐴0,

1

𝛾

𝑑

𝑑𝑡
𝐴2 = −(1 + 𝑖Δ2)𝐴2 + 𝐴*

1𝐴0,

1

𝛾0

𝑑

𝑑𝑡
𝐴0 = 𝐸 − (1 + 𝑖Δ0)𝐴0 −𝐴1𝐴2. (4)

The stationary solutions can be obtained by setting
𝑑𝐴0

𝑑𝑡 = 𝑑𝐴1

𝑑𝑡 = 𝑑𝐴2

𝑑𝑡 = 0. There is a trivial solution
𝐴0 = 𝐸

1+𝑖Δ0
when 𝐴1 = 𝐴2 = 0. Let 𝜎 = |𝐸|2

|𝐴0|2 be
the pump intensity normalized to the pump thresh-
old. Setting the phases of 𝐴1, 𝐴2, and 𝐴0 to be 𝜙1, 𝜙2,
and 𝜙0, respectively, then 𝐴1 = |𝐴|𝑒𝑖𝜙1 , 𝐴2 = |𝐴|𝑒𝑖𝜙2 ,
and 𝐴0 = |𝐴0|𝑒𝑖𝜙0 . One can obtain 𝑒𝑖(𝜙1+𝜙2) =

𝐸
(1+𝑖Δ)(1+𝑖Δ0)+|𝐴|2 . In order to simplify the calcula-
tion we assume 𝜙1 = 𝜙2 = 𝜙. Finally, we obtain the
stationary solution as

𝐴1 = 𝐴2,

𝑒𝑖2𝜙 =
𝐸

(1 + 𝑖Δ)(1 + 𝑖Δ0) + |𝐴1|2
,

𝑒𝑖𝜙0 =
1 + 𝑖Δ√
1 + Δ2

𝑒𝑖2𝜙. (5)

In this case, the fluctuations can be obtained by
solving the classical equations for the fields lin-
earized around the considered mean values.[13−15]

The source terms include the vacuum fluctuations
entering through the coupling mirror of the cav-
ity. One can obtain 𝑑𝐴

𝑑𝑡 = 𝑀𝐴 + 𝐵𝐴𝑖𝑛,

where 𝐴 = [𝛿𝐴1, 𝛿𝐴
*
1, 𝛿𝐴2, 𝛿𝐴

*
2, 𝛿𝐴0, 𝛿𝐴

*
0]T, 𝐵 =

diag[
√

2𝛾,
√

2𝛾,
√

2𝛾,
√

2𝛾,
√

2𝛾0,
√

2𝛾0 ] is the diago-
nal matrix of the transmission coefficients, and 𝐴𝑖𝑛 is
source of the fields; 𝑀 is the drift matrix:

𝑀=

⎡⎢⎢⎢⎢⎢⎣
−𝛾(1+𝑖Δ) 0 0 𝛾𝐴0 𝛾𝐴*

2 0
0 −𝛾(1−𝑖Δ) 𝛾𝐴*

0 0 0 𝛾𝐴2

0 𝛾𝐴0 −𝛾(1+𝑖Δ) 0 𝛾𝐴*
1 0

𝛾𝐴*
0 0 0 −𝛾(1−𝑖Δ) 0 𝛾𝐴1

−𝛾0𝐴2 0 −𝛾0𝐴1 0 −𝛾0(1+𝑖Δ0) 0
0 −𝛾0𝐴

*
2 0 −𝛾0𝐴

*
1 0 −𝛾0(1−𝑖Δ0)

⎤⎥⎥⎥⎥⎥⎦ . (6)
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The modes of the cavity can be solved in the fre-
quency domain by Fourier transformation: 𝐴(𝜈) =
(𝑖𝜈𝐼 − 𝑀)−1𝐵𝐴(𝜈)in, where 𝜈 is the analysis fre-
quency. Applying the equation between the input
fields and the output fields at the coupling mirror,[16]
i.e. 𝐴(𝜈)out = 𝐵𝐴(𝜈) − 𝐴(𝜈)in, one can obtain
the output fields as 𝐴(𝜈)out = [𝐵(𝑖𝜈𝐼 − 𝑀)−1𝐵 −
𝐼]𝐴(𝜈)in, where 𝐼 is the identity matrix.
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Fig. 3. The minimized values of 𝑉01 and 𝑉12 versus nor-
malized pump power 𝜎 with 𝛾 = 0.015, 𝛾0 = 0.025, and
𝜔 = 1.

We define the quadrature amplitude and phase
components as 𝑋𝑖 =

𝛼𝑖+𝛼†
𝑖

2 and 𝑌𝑖 =
𝛼𝑖−𝛼†

𝑖

2𝑖 . The sum
of the energy of the signal and idler beams is equal
to the energy of the pump beam. Thus the quadra-
ture amplitudes of the signal and idler beams are anti-
correlated to that of pump. According to the sufficient
inseparability criterion for CV multimode entangle-
ment proposed by van Loock and Furusawa, for this
three-mode system, we obtain the inequalities[17]

𝑉01 = ⟨𝛿2(
𝑋0 + 𝑋1√

2
)⟩ + ⟨𝛿2(

𝑌1 − 𝑌0√
2

+ 𝑔2𝑌2)⟩ ≥ 1,

𝑉12 = ⟨𝛿2(
𝑋1 −𝑋2√

2
)⟩ + ⟨𝛿2(

𝑌1 + 𝑌2√
2

+ 𝑔3𝑌0)⟩ ≥ 1,

𝑉20 = ⟨𝛿2(
𝑋2 + 𝑋0√

2
)⟩ + ⟨𝛿2(

𝑌2 − 𝑌0√
2

+ 𝑔1𝑌1)⟩ ≥ 1,
(7)

where 𝑔𝑖 (𝑖 = 1, 2, 3) are adjustable factors. The min-
imized values on the left of the inequalities can be
obtained by choosing an appropriate 𝑔𝑖. Violation of
any pair of the above inequalities is sufficient for full
inseparability of three modes.[17]

Since the signal is exchangeable with the idler, the
inequality 𝑉01 is equal to 𝑉20. In the following we
only calculate the equalities of 𝑉01 and 𝑉12. In this
case, for simplicity, we assume that the three modes
are all on resonance in the cavity with Δ = Δ0 = 0.
Figure 2 shows that the minimized values of 𝑉01 and
𝑉12 versus normalized analyzing frequency 𝜔 = 𝜈/𝛾
with 𝛾 = 0.015, 𝛾0 = 0.025, and 𝜎 = 2. From
Fig. 2 one can see that the minimized values of the in-
equalities are both below 1 in a wide frequency range
which is enough to assert that the inequalities 𝑉01 and
𝑉12 are violated. This indicates that the signal, idler
and pump beams are CV entangled with each other.

Moreover, the intensities of signal and idler beams
are enhanced by a difference-frequency process and
the optical cavity operating above the threshold. A
bright three-mode entanglement can be produced in
this scheme.
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Fig. 4. The minimized values of 𝑉01 and 𝑉12 versus the
damping constant 𝛾0 with 𝛾 = 0.015, 𝜎 = 1.5, and 𝜔 = 1.
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Fig. 5. The minimized values of 𝑉01 and 𝑉12 versus the
damping constant 𝛾 with 𝛾0 = 0.025, 𝜎 = 1.5, and 𝜔 = 1.

In Fig. 3 we plot the minimized values of 𝑉01 and
𝑉12 versus normalized pump power 𝜎 with 𝛾 = 0.015,
𝛾0 = 0.025, and 𝜔 = 1. Figure 3 clearly shows that 𝑉12

increases with the increasing normalized pump power,
but 𝑉01 decreases initially, then increases. Moreover,
there is no quantum correlation between the pump
and idler beams, only signal and idler are entangled,
when the pump power is small. Since the nonlinear
conversion efficiency is low when the pump power is
below the threshold, the pump power is much higher
than that of the idler and signal beams, and its quan-
tum characteristic does not present. When the pump
power is above the threshold, the signal power will
increase with the increasing conversion efficiency and
the idler power will also increase due to the difference-
frequency amplification at the same time. However,
the pump power becomes lower for the depletion and
its quantum characteristics starts to appear above the
oscillation threshold at this time which is similar to
the case in the optical parametric oscillator above the
threshold in Refs. [2, 6]. With the increase of pump
power, one can see that the best three-mode entan-
glement can be obtained at about 𝜎 = 1.3, where the
inequality has a minimum. Then, the value of 𝑉01

increases with the increasing normalized pump power.
With the further increase, the gain begins to saturate,
the pump power intensity is larger than that of the sig-
nal and idler beams and its quantum characteristics
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vanishes when the value of 𝑉01 exceeds 1.
Figure 4 plots the minimized values of 𝑉01 and

𝑉12 versus the damping constant 𝛾0 with 𝛾 = 0.015,
𝜎 = 1.5, and 𝜔 = 1. One can see that the best
three-mode entanglement can be obtained at about
𝛾0 = 0.028. We also plot the minimized values of
𝑉01 and 𝑉12 versus the damping constant 𝛾 in Fig. 5
with 𝛾0 = 0.025, 𝜎 = 1.5, and 𝜔 = 1. It is easy to
find that the best three-mode entanglement can be
achieved at about 𝛾 = 0.013. When the losses are
very small, the damping constants are related to the
amplitude transmission coefficients 𝑡𝑖 by 𝑡2𝑖 = 2𝛾𝑖.[9]
A larger transmission coefficient can make the optical
field have more losses in the cavity. By contrast, a
smaller transmission coefficient can make the output
field become weaker. Therefore, in order to obtain
the best entangled beams, one has to choose appropri-
ate transmission coefficients according to the damping
constants by theoretical calculation.

0.00 0.05 0.10 0.15 0.20

0.4

0.6

0.8

1.0

 

Detuning of 0

12

01

Fig. 6. The minimized values of the inequalities versus
the detuning parameter Δ0.
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Fig. 7. The minimized values of the inequalities versus
the detuning parameter Δ.

In the above discussions we have taken Δ = Δ0 =
0 for the triple resonance condition. It is interest-
ing to see what happens when certain frequency de-
tuning exists. In Fig. 6 we plot the minimized val-
ues of the inequalities versus the detuning parameter
Δ0 with 𝛾 = 0.02, 𝛾0 = 0.01, Ω = 0.2, 𝜎 = 2, and
Δ = 0. One can see that there is little influence on
the three-mode entanglement when the pump deviates
from resonance. Figure 7 plots the minimized values
of the inequalities versus the detuning parameter Δ.
It shows that the three-mode entanglement is sensi-
tive to a change of Δ. However, there is little effect
on the three-mode entanglement characteristics when

frequency detuning is very small. When Δ = Δ0 = 0
the degree of three-mode squeezing is at its greatest, as
is the degree of entanglement. When the frequencies
deviate from the resonance frequency, both the degree
of entanglement and the degree of squeezing become
lower, which indicates a close relation between the two
quantum effects.

In summary, we have proposed a simple scheme
to directly produce bright enhanced three-mode CV
entanglement by putting difference-frequency ampli-
fication inside an optical cavity operating above the
threshold. The pump, signal and idler are CV entan-
gled with each other by applying a sufficient insep-
arability criterion for CV multimode entanglement.
Because the entering seed can not only enhance the
stability of the cavity, but also increase the nonlinear
conversion efficiency, our scheme is easier to realize
experimentally than the scheme used in Ref. [2]. The
intensities of the entanglement beams are enhanced
by the difference-frequency generation process and the
enhanced three-mode CV entanglement can be gener-
ated when the optical cavity is operating above the
threshold. When the pump power is small, one can
only obtain signal and idler two-mode CV entangle-
ment. The best bright three-mode entanglement can
be obtained at 𝜎 = 1.3. In addition, the three-mode
entanglement characteristic is related to the damp-
ing constants and the detuning of frequency. The re-
sults indicate that the three-mode CV entanglement
is rather more sensitive to the detuning of Δ than of
Δ0. The maximum degree of entanglement can be ob-
tained when Δ = Δ0 = 0. Theoretical calculation
may provide referenced data for experimental studies.
This enhanced three-mode CV entanglement can be
taken as a resource in the applications of quantum
communication and computation networks.
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