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Abstract Quantum entanglement dynamics of two Tavis–Cummings atoms interacting with the quantum light sources

in a cavity is investigated. The results show the phenomenon that the concurrence disappears abruptly in a finite time,

which depends on the initial atomic states and the properties of squeezed states. We find that there are two decoherence-

free states in squeezed vacuum fields: one is the singlet state, and the other entangled state is the state that combines

both excited states and ground states with a relative phase being equal to the phase of the squeezed state.
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1 Introduction

Quantum entanglement (QE) plays a leading role in
quantum optics and the fundamentals of quantum me-
chanics and it is known as an important resource for
quantum information science (QIS),[1−2] such as quantum
teleportation, quantum cryptography, and quantum dense
coding, etc. For instance, entanglement-assisted quantum
communication can enlarge the capacity[3] and enhance
the efficiency of quantum channels.[4] So, it is of great im-
portance to study entanglement dynamics in diverse sce-
narios.

In 2004, Yu and Eberly showed that two initially en-
tangled qubits without interaction between each other
could be later suddenly disentangled completely.[5] The
phenomenon, named the entanglement sudden death
(ESD) afterwards, is distinctly different from the behav-
ior of local decoherence process, which takes an infinite
time evolution under the influence of vacuum fluctuations.
Many researchers have devoted themselves to the realm
both in theory[6−12] and in experiment[13−16] since the first
confirmation of the ESD by Almeida and his collaborators
in 2007.[17] Although people have already tried to seek the
essence of ESD, its mechanism is still unclear.[18]

Cavity quantum electrodynamics (CQED), studying
the interaction between light and atoms (or ions, atomic
ensembles etc.) in a confined space, is thought to be a po-
tential candidate for the demonstration of quantum state
engineering.[19] ESD was also well studied in the CQED
context via J–C models[20−25] and the extensive J–C mod-
els (T–C models).[26−32] In those proposals, the bath is
usually taken as the vacuum reservoir or classical fields
(such as thermal fields). The ESD effect does appear in
some cases but we are still lack of the general conditions

for the ESD occurrence. For example, the result that the
presence of both atoms in excited states is a necessary
condition for ESD in vacuum reservoir with J–C model,
but this result is not suitable for the broader quantum
states.[31]

In this paper, we have investigated the entanglement
behavior of two Tavis–Cummings atoms interacting with
the squeezed vacuum states (SVS), a typical quantum
light source,[33] for various initial atomic states. Our nu-
merical results show that the atomic concurrence is closely
related to the initial atomic state and the properties of the
light sources, such as the phase and the squeezing factor
and the period of the sudden death depends on the ini-
tial atomic states. In addition, we have also shown that
there exist two decoherence-free states in SVS including
the singlet state and the state with the combination of
both excited states and ground states, which is different
from early result obtained in the thermal fields.[34]

2 Model and Measurement for Two-Atom QE

The Tavis–Cummings model for two identical two-level
atoms interacting with a single cavity mode (indicated as
cavity C) is considered and shown in Fig. 1, where the two
atoms with the ground state |g〉 and the excited state |e〉
are labeled by the subscripts A and B. For simplicity, we
assume that there is no direct interaction between the two
atoms and they are both resonant with the cavity mode
with the same, real coupling rate g. In this situation, the
interaction Hamiltonian for the total system, in the dipole
approximation and the rotating-wave approximation, is[35]

(~ = 1)

HI = g
∑

i=A,B

(a†σ−
i + aσ+

i ) , (1)
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where a(a†) represents the annihilation (creation) opera-
tor for the cavity field, σ− = |g〉〈e| and σ+ = |e〉〈g| are
the raising and lowing operators, respectively.

Fig. 1 Schematic diagram of the Tavis–Cummings
model. Two identical atoms A and B couple to a single-
mode cavity field. There is no interaction between these
two atoms initially.

If we suppose that the two atoms and the cavity field
have no interaction initially, then the density operator for
the initial system state can be expressed as

ρ(0) = ρAB(0) ⊗ ρC(0) , (2)

with ρAB(0) and ρC(0) representing the initial atomic and
cavity’s density matrices, respectively. Under the action
of the interaction Hamiltonian (1), the system state, at
time t, evolves to

ρ(t) = e−iHtρAB(0) ⊗ ρC(0) e iHt . (3)

By tracing the system’s density matrix over the cavity
field, the density matrix for the two atoms is

ρAB(t) = Tr C ρ(t) . (4)

Similar to the previous discussions, here we also use
the concurrence to quantify the degree of entanglement
for ρAB(t), expressed as[36]

C(ρAB) = max{0, λ1 − λ2 − λ3 − λ4} , (5)

with λi (i = 1, 2, 3, 4) being the square root of the
eigenvalues of the matrix ρAB(σy ⊗ ρy)ρ∗AB(σy ⊗ ρy) in
decreasing order and ρ∗AB the complex conjugation of ρAB

in the standard basis and σy is a Pauli matrix expressed

as

(

0 −i

i 0

)

. The concurrence C(ρAB) varies from 0 to

1, corresponding to disentanglement and the maximum
entanglement, respectively. Besides, it is also proved that
the concurrence for the X-class state[8]

ρAB =











a 0 0 w

0 b z 0

0 z∗ c 0

w∗ 0 0 d











, (6)

with a, b, c, d being positive and satisfying a+b+c+d = 1,
and w, z being complex quantities, can be simplified as

C(ρAB) = 2 max{0, |z| −
√
ad, |w| −

√
bc} . (7)

3 QE Dynamics of Two Atoms in Squeezed

Vacuum States

We now discuss the QE dynamics for two atoms ini-
tially in the SVS, expanded in the Fock-state basis[33]

|ψSVS〉 = (1 − ξ2)1/4
∞
∑

n=0

(−ξ e iθ)n
√

(2n)!

2nn!
|2n〉

= (1 − ξ2)1/4
∞
∑

n=0

χn · (−ξ e iθ/2)n/2
√
n!

(χn · n/2)! |n〉, (8)

where χn = (1 + (−1)n)/2, ξ = tanh r with r represent-
ing the squeezing factor. Its mean photon number is
n̄SVS = sinh2 r = ξ2/(1 − ξ2). We suppose the two atoms
are initially prepared either in the ψ-type Bell state

|ψAB〉 = cosα|eg〉 + sinα|ge〉 , (9a)

or in the Φ-type Bell state

|ΦAB〉 = cosα|ee〉 + sinα|gg〉 . (9b)

For clarity, the system evolution and the atomic concur-
rence for ψ-type Bell states and Subsec. 3.2 for Φ-type Bell
states is described in Subsecs. 3.1 and 3.2, respectively.

3.1 System Evolution and Atomic Concurrence

for ψ-type Bell States

Under the action of the interaction Hamiltonian (1),
the system’s density matrix, at the interaction time t,
evolves from

ρ(0) = |ψAB〉〈ψAB | ⊗ |ψSVS〉〈ψSVS| , (10)

to

ρ(t) = e−iHtρ(0) e iHt = (1 − ξ2)1/2
∞
∑

m,n=0

χmχn · (−ξ/2)(m+n)/2 e i(m−n)θ/2
√
m!n!

(χm ·m/2)!(χn · n/2)!

× (Ceem|ee〉|m− 1〉 + Cegm|eg〉|m〉 + Cgem|ge〉|m〉 + Cggm|gg〉|m+ 1〉)
× (C∗

een〈ee|〈n− 1| + C∗
egn〈eg|〈n| + C∗

gen〈ge|〈n| + C∗
ggn〈gg|〈n+ 1|) , (11)

with

Cee,n =
−i sin(α+ π/4)

√
n sin(gt

√

2(2n+ 1))√
2n+ 1

, Ceg,n =
sin(α+ π/4)√

2
cos(gt

√

2(2n+ 1)) +
sin(α− π/4)√

2
,

Cge,n =
sin(α+ π/4)√

2
cos(gt

√

2(2n+ 1)) − sin(α− π/4)√
2

, Cgg,n =
−i sin(α+ π/4)

√
n+ 1 sin(gt

√

2(2n+ 1))√
2n+ 1

, (12)
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and C∗
x,n (x = ee, eg, ge, gg) being the complex conju-

gate of Cx,n. By tracing over the cavity field, the
density matrix for the atomic system, in the basis of
{|ee〉, |eg〉, |ge〉, |gg〉}, can be described in the form of
Eq. (6) with the matrix elements:

a =
√

1 − ξ2
∞
∑

n=0

χ2
n(−ξ/2)nn!

[(χn · n/2) !]2
|cee,n|2,

b =
√

1 − ξ2
∞
∑

n=0

χ2
n(−ξ/2)nn!

[(χn · n/2) !]2
|ceg,n|2,

c =
√

1 − ξ2
∞
∑

n=0

χ2
n(−ξ/2)nn!

[(χn · n/2) !]2
|cge,n|2,

d =
√

1 − ξ2
∞
∑

n=0

χ2
n(−ξ/2)nn!

[(χn · n/2) !]2
|cgg,n|2,

z =
√

1 − ξ2
∞
∑

n=0

χ2
n(−ξ/2)nn!

[(χn · n/2) !]2
ceg,nc

∗
ge,n,

w =
√

1 − ξ2
∞
∑

n=0

χ2
n(−ξ/2)n+1

√

n!(n+ 2)!

(χn · n/2) !(χn+2 · (n+ 2)/2) !

× e iθcee,n+2c
∗
gg,n . (13)

In order to show the time evolution of the atomic con-

currence, we substitute Eqs. (13) to (7). It is clearly seen

that the concurrence is independent on the SVS phase θ.

The concurrence CAB as the function of scale time gt/π

and α is depicted in Fig. 2, where ξ is chosen to be (a)√
0.2, (b)

√
0.5, (c)

√
0.9, corresponding to the mean pho-

ton numbers n̄SVS = (a) 0.25, (b) 1, (c) 9, respectively,

and α is confined within the range [0, π]. The numerical

results show that the concurrence is periodically oscillat-

ing. It disappears abruptly in a finite time (ESD) when

α ∈ (0, π/2) and the larger mean photon number of the

SVS is, the more obvious the ESD appears. Besides, for

the singlet state |ψAB(3π/4)〉 = (−|eg〉|ge〉)/
√

2, the con-

currence does not decay in the squeezed vacuum state,

which implies that it is a decoherence-free states (DFS).[34]

3.2 System Evolution and Atomic Concurrence

for Φ-type Bell State

Let us consider the system evolution for the initial Φ-

type Bell states described in Eq. (9b). In this case, the

initial system is

|ρ(0)〉 = |ΦAB〉〈ΦAB| ⊗ |ψSVS〉〈ψSVS| . (14)

After the interaction time t, the system will be

|ρ(t)〉 =(1 − ξ2)1/2
∞
∑

m,n=0

χmχn · (−ξ/2)(m+n)/2 e i(m−n)θ
√
m!n!

(χm ·m/2)!(χn · n/2)! (Aeem(t)|ee〉|m〉 +A+n(t)|+〉|m+ 1〉

+Aggm(t)|gg〉|m+ 2〉 +Bggm(t)|gg〉|m〉 +B+m(t)|+〉|m− 1〉 +Beem(t)|ee〉|m− 2〉)
× (A∗

een(t)|ee〉|n〉 +A∗
+n(t)|+〉|n+ 1〉 +A∗

ggn(t)|gg〉|n+ 2〉
+B∗

ggn(t)|gg〉|n〉 +B∗
+n(t)|+〉|n− 1〉 +B∗

een(t)|ee〉|n− 2〉) , (15)

with |±〉 = (1/
√

2)(|e〉 ± |g〉) and

Aeen =
(n+ 1) cos(gt

√
2n+ 3) + (n+ 2)

2n+ 3
, A+n =

−i
√

(n+ 1)(2n+ 3) sin(gt
√

2n+ 3)

2n+ 3
,

Aggn =

√

(n+ 1)(n+ 2)(cos(gt
√

2n+ 3) − 1)

2n+ 3
, Bggn =

n cos(gt
√

2n− 1) + (n− 1)

2n− 1
,

B+n =
−i

√

n(2n− 1) sin(gt
√

2n− 1)

2n− 1
, Been =

√

n(n− 1)(cos(gt
√

2n− 1) − 1)

2n− 1
. (16)

By tracing over the cavity field, the atomic density matrix, in the basis {|ee〉, |eg〉, |ge〉, |gg〉}, is again an X-class form
(6) with (For the sake of concision, we have ignored the normal parameter

√

1 − ξ2) the elements:

a =

∞
∑

n=0

χ2
n(−ξ/2)nn!

[(χn · n/2) !]2
(|Aeen|2 + |Been|2) +

∞
∑

n=0

χ2
n(−ξ/2)n+1

√

n!(n+ 2)!

(χn · n/2) !(χn+2 · (n+ 2)/2) !
( e−iθAeenB

∗
een+2 + e iθA∗

eenBeen+2),

b =

∞
∑

n=0

χ2
n(−ξ/2)nn!

[(χn · n/2) !]2
(|A+,n|2 + |B+,n|2)

2
+

∞
∑

n=0

χ2
n(−ξ/2)n+1

√

n!(n+ 2)!

(χn · n/2) !(χn+2 · (n+ 2)/2) !

( e−iθA+nB
∗
+,n+2

2
+

e−iθA∗
+nB+,n+2

2

)

,

d =

∞
∑

n=0

χ2
n(−ξ/2)nn!

[(χn · n/2) !]2
(|Aggn|2 + |Bggn|2) +

∞
∑

n=0

χ2
n(−ξ/2)n+1

√

n!(n+ 2)!

(χn · n/2) !(χn+2 · (n+ 2)/2) !
( e−iθAggnB

∗
ggn+2 + e iθA∗

ggnBggn+2),

w =
∞
∑

n=0

χ2
n(−ξ/2)nn!

[(χn · n/2) !]2
AeenB

∗
ggn +

∞
∑

n=0

χ2
n(−ξ/2)n+1

√

n!(n+ 2)!

(χn · n/2) !(χn+2 · (n+ 2)/2) !
e iθ(Aee,n+2A

∗
ee,n +B∗

ee,nBee,n+2)

+

∞
∑

n=0

OE2(−ξ/2)n+2
√

n!(n+ 4)!

2n+2(OE · n/2) !(OE · (n+ 4)/2) !
× e2iθA∗

gg,nBee,n+4,

c =z = b . (17)
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If we substitute these relations to (7), we can easily see
that the concurrence is sensitive to the phase θ, which is
different from that for the ψ-type Bell state.

Fig. 2 Time evolution of the concurrence CAB vs.
the scale time gt/π and the initial atomic phase α for

squeezed vacuum states with (a) ξ =
√

0.2, (b) ξ =
√

0.5,

(c) ξ =
√

0.9 for ψ-type initial atomic states.

The time evolution of the concurrenceCAB as the func-
tion of the scale time gt/π and α is plotted in Fig. 3,
where we have set, for simplicity, θ = 0 and ξ = (a)

√
0.2,

(b)
√

0.5, (c)
√

0.9. The result shows that the concur-
rence is also oscillating periodically and can suddenly
die in a finite time for α ∈ [π/2, π] different from that
for ψ-type Bell states with α ∈ (0, π/2). It is also ob-
tained that the larger the mean photon number of SVS is,
the more obvious the ESD appears, which is the same
to that for ψ-type Bell states. Besides, for the state
|Φ(π/4)〉 = (|ee〉 + |gg〉)/

√
2 the system may not decay

as long as ξ is large enough.

Fig. 3 Time evolution of the concurrence CAB vs.
the scale time gt/π and the initial atomic phase α for

squeezed vacuum states with θ = 0 and (a) ξ =
√

0.2,

(b) ξ =
√

0.5, (c) ξ =
√

0.9 for Φ-type initial atomic
states.

We have shown the concurrence versus the scale time

gt/π and θ in Fig. 4, where we set α = 3π/4 and ξ =
√

0.5

without loss of generalization. Our numerical results

demonstrate that the concurrence is strongly dependent

on the phase θ. The concurrence for α = 3π/4 and θ = π

is similar to that for α = π/4 and θ = 0. So, we can de-

duce that the state |Φ(θ)〉 = (|ee〉 + e iθ|gg〉)/
√

2 is a DFS

for SVS with the arbitrary phase θ.
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Fig. 4 Time evolution of the concurrence CAB vs θ,
with ξ =

√

0.5 and α = 3π/4.

4 Discussions and Conclusions

Similar to the results obtained from the model for two
T–C atoms in the thermal fields, the ESD being consid-
ered here for two T–C atoms in the quantum light sources
is also related to the initial atomic states and the mean
photon number of the field.[30−31] But our result shows
that both atoms in the excited states (or in the ground
states) can be entangled. They will not be entangled if
the two atoms hold only one excited states. We also find
that the concurrence for the initial Φ-type Bell states is de-
pendent on the phase of the quantum light sources, which
is different from that obtained from the two T–C atoms
in the coherent states or in the thermal fields.

Recently, Chen and his collaborators[32] studied the
ESD phenomenon for two atoms driven by a strong clas-
sical field and they found that ESD can be controlled by
the squeezed factor, which is related to the atom-cavity

detuning. The smaller the squeezed factor is, the more
obvious the ESD demonstrates. In addition, DFS can
also be found in the large detuning condition in their
scheme. While in our proposal, we find that ESD can
be enhanced with the increase of the squeezed factor and
the DFS mechanism is quiet different from the results in
[23]. Although the nature of the DFS is still not very clear
in our scheme, but the distinct feature of the ESD show-
ing here provides some insight into the physics of atoms
in a quantum light source.

In conclusion, we have studied the two-atom entan-
glement based on the Tavis–Cummings atoms interacting
with the quantum light sources. Although the physics
behind the ESD has not been well understood quantita-
tively at this moment, we still find that the concurrence
is closely related to the initial atomic state and the prop-
erties of the light sources. When we confine α within
α ∈ [0, π], the concurrence can disappear abruptly in the
finite time in the case of α ∈ (0, π/2) for ψ-type Bell states
and in the case of α ∈ [π/2, π] for Φ-type Bell states. We
also show that for large mean photon number of the quan-
tum light sources, corresponding to strong squeezing, the
ESD effect is more obvious. In addition, the singlet state
(|eg〉 − |ge〉)/

√
2 is always a DFS in the SVS and the en-

tangled state (|ee〉 + e iθ|gg〉)/
√

2 is also a DFS only if the
mean photon number of the SVS is large enough. These
features are quite different from the previous results ob-
tained by two atoms interacting with the vacuum state or
the thermal field. We know that more and more quan-
tum light sources at the transition of the atoms have been
generated,[37−38] the system we discuss here could be fea-
sible and the quantum entanglement dynamics can be in-
vestigated by using the quantum light sources.
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[14] O.J. Faŕıas, C.L. Latune, S.P. Walborn, L. Davidovich,

and P.H.S. Ribeiro, Science 324 (2009) 1414.

[15] J.S. Xu, X.Y. Xu, C.F. Li, C.J. Zhang, X.B. Zou, and

G.C. Guo, Nature Commun. 1 (2010) 7.

[16] J.S. Xu, C.F. Li, M. Gong, X.B. Zou, C.H. Shi, G. Chen,

and G.C. Guo, Phys. Rev. Lett. 104 (2010) 100502.

[17] M.P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S.P.

Walborn, P.H.S. Riberiro, and L. Davidovich, Science 316

(2007) 579.

[18] T. Yu and J.H. Eberly, Science 323 (2009) 598.



434 Communications in Theoretical Physics Vol. 56

[19] K.M. Birnbaum, A. Miller, A.D. Boozer, T.E. Northup,

and H.J. Kimble, Nature (London) 436 (2005) 87
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