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Abstract
By employing multiple conventional single-photon counting modules (SPCMs), which are
binary-response detectors, instead of photon number resolving detectors, the nonclassicality
criteria are investigated for various quantum states. The bounds of the criteria are derived from
a system based on three or four SPCMs. The overall efficiency and background are both taken
into account. The results of experiments with thermal and coherent light agree with the
theoretical analysis. Compared with photon number resolving detectors, the use of a Hanbury
Brown–Twiss-like scheme with multiple SPCMs is even better for revealing the
nonclassicality of the fields, and the efficiency requirements are not so stringent. Some
proposals are presented which can improve the detection performance with binary-response
SPCMs for different quantum states.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nonclassicality of quantum states plays an important role
in quantum optics [1], quantum entanglement and quantum
discord [2, 3] and has also become an indispensable tool
in quantum physics and quantum information science [4].
Many research groups devoted themselves to implementing
and applying various nonclassical effects in theory and
experiment, such as photon antibunching, quadrature squeez-
ing and photon number squeezing, sub-Poissonian photon
statistics, negativity of the Wigner distribution function, etc.
Nonclassical states with these quantum properties can be used
as the important sources for quantum information processing
[5] and quantum metrology [6]. However, the quantitative
measure of nonclassicality for quantum fields is still an
open question [7] and none of the properties can identify
nonclassicality infallibly and rationally. Although there are
some commonly accepted formal definitions of nonclassical
states, no necessary and sufficient criterion has been proposed
that would allow verification of nonclassicality of an optical
state. How to quantify directly and easily the variation of

the nonclassicality of quantum fields based on the current
technique is an important task [8]. Since the early works of
Walls [9] and Mandel [10], analysis of the photon statistics,
the most sensitive and very widespread method of optical
measurement, has been used to investigate the nonclassicality
of optical fields both in theory and experiment. Photon
antibunching [11] and sub-Possionian [12] are well-known
nonclassical effects and have been extensively studied.

For an arbitrary unknown optical source, there are
some methods in general to determine its photon statistics,
depending on the properties of the source. The photon-number
resolving detection (PNRD) [13, 14] has been established by
some new technologies and devices, such as transition edge
sensor (TES) [15], superconducting optical detectors [16],
field-effect transistors with quantum dots [17, 18], etc. All
of these methods and technologies already point the way
to exciting applications [19–21] although their performance
is still very much limited by the requisite superconducting
conditions and some technical complexity, which are difficult
to realize and involve great cost. Other methods include
multiplexed detection, either spatial multiplexing [22] or time
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multiplexing [23], maximal likelihood algorithms (MLA) [24],
variable attenuation method (VAM) [25], optical homodyne
detection (HDT) [26] and reconstruction with intensified
charge-coupled device cameras (iCCDs) [27]. Each of these
methods has its own advantages and disadvantages. The
actual measurement will suffer inevitably from the background
(including the dark counts) and finite detection efficiency.
These imperfections may smear the quantum features. It is
still a challenge to find out a relative simple and practical
method without the stringent requirements for the experiment
to reveal the nonclassical features of the light fields. In 2004,
Waks et al [14] provided a criterion for nonclassicality based
on the photon counts from a photon number discrimination
detector and demonstrated experimentally. Several measures
of nonclassicality are proven directly for the two-photon
number state [28] or twin beams [29] created by the parametric
down-conversion process. Compared to other methods,
Waks’ criterion is more direct and practical. Nevertheless,
the visible light photon counter must be cooled down to
very low temperature and shielded from background photons
[30]. For this reason, the commercial binary response
single-photon counting modules (SPCMs) are still the most
commonly used detectors in quantum optics and quantum
information science [31–33]. People also exploited hybrid
photomultipliers endowed with self-consistent calibration [34]
and linear response [35] to directly reconstruct the Wigner
function and characterize nonclassical continuous-variable
states [36]. The search for an effective method to measure
nonclassicality with low demands and good performance on
experiment has drawn much attention in recent years.

In this paper, we present a criterion for nonclassicality
based on Waks’ criterion [14]. There are three points which
are different from Waks’ treatment: (1) we use the usual binary
response SPCMs, instead of the PNRD; (2) by re-defining the
ratio of �, the criterion is valid in an even wider range; (3) both
of the background noise and the overall detection efficiency
have been taken into account [37, 38]. We have investigated
different light fields, from classical thermal and coherent states
to quantum Fock states and squeezed vacuum states (SVS). It
is remarkable and quite unexpected that the use of multiple
SPCMs is even better than that of the PNRD. We show that,
by just using three or four SPCMs, even for an imperfect
detection system with considerable losses and background
dark counts, the nonclassical features of the incident light can
still be extracted and verified even with a moderate quantum
efficiency of about 50%. We have also tested the criterion with
coherent and thermal light experimentally and the results are
in good agreement with the theoretical analysis.

In section 2, we discuss the criterion for different quantum
states based on our theoretical analysis, but instead of using
PNRD, we employ the SPCMs. New important bounds are
introduced following our treatment. We have also compared
the theoretical results based on a system of a double Hanbury
Brown–Twiss-like (HBT-like) [39] scheme consisting of three
or four detectors with that of PNRD and it shows that the
performance of the measurement for the nonclassicality can
be essentially improved. Section 3 is devoted to the experiment
with coherent and thermal light and a summary is presented in
section 4.

2. Theoretical analyses

We now introduce a generalized measurable criterion defined
by the photon probabilities

� =
N
√

P2

N
√

P1 + N
√

P2 + N
√

P3
, (1)

where Pn are the probabilities of observing n (n = 1, 2, 3)

photons in the state and N � 1 is an integer. In the original
criterion given by Waks [14], N = 1. The above defined
� characterizes the photon statistical properties of the light
field in general. We can actually prove that the coherent state
is positioned at the border between quantum and classical
domain and all classical lights are bounded by maximum
�max,C . It is well known that any classical light has a Glauber–
Sudarshan P representation that obeys the requirements of a
proper distribution [40], and the corresponding photon number
distribution can be written as a sum or integral of Poissonian
number distributions [41]. For a Poissonian photon number
distribution with PC(n) = αn e−α/n!, the maximum bound
is �max,C = [1 + 2(1+1/2N)3(−1/2N)]−1 with the mean photon
number α = √

6. Thus, for a Poissonian distribution,
� � �max,C . And for a distribution of Poissonians with
PC(φ) = ∫

PC(n)φ dα, where φ is a probability distribution
satisfying

∫
φ dα = 1, we have

�(φ) =
N

√∫
PC(2)φ dα

N

√∫
PC(1)φ dα + N

√∫
PC(2)φ dα + N

√∫
PC(3)φ dα

�
∫

N
√

PC(2)φ dα∫
N
√

PC(2) 1
�
φ dα

= � � �max,C, (2)

where φ is non-negative and PC(φ) is strictly positive. Thus,
any classical light which is constrained to distributions of
Poissonian photon statistics cannot violate the criterion. The
reason we generalize Waks’ criterion is that the ratio defined by
(1) may actually enlarge the range of the mean photon number
in which the nonclassicality could be extracted when N is
greater than 1. Based on equation (1) and a double HBT-like
scheme which consists of three or four SPCMs (as depicted
schematically in figure 1), we can extract the nonclassical
properties of the light.

Let us first consider the scheme with three SPCMs Di

(i = 1, 3, 4) and the detector D2 will not be used at this
moment by removing the beam splitter B2 (dashed frame),
as shown in figure 1. Assume that the input state |ψ〉
has an intrinsic photon distribution Pin(n). We consider an
imperfect detection system with an overall detection efficiency
η, which includes the optical collection, propagation and
quantum efficiencies of the system. All of these imperfections
can be simulated as a beam splitter B0 with a reflection of
1 − η and transmission of η [7, 37, 42]. In figure 1, B1

is either 1:2 (for three SPCMs) or 1:1 (for four SPCMs)
lossless beam splitter, and B2 and B3 are the 1:1 ones. In
our analysis, we assume that all the SPCMs have the same
efficiency. Actually, the imbalance effects caused by the non-
ideal beamsplitting ratios and unbalanced detectors can be
dismissed in our system. Supposing the efficiency difference
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Figure 1. Double HBT-like configuration based on three (without
the dashed frame) or four (with the dashed frame) SPCMs with an
overall efficiency η and background |ϕ〉. B1 is 1:2 (for three
SPCMs) or 1:1 (for four SPCMs) lossless beam splitter, and B2, B3

are the 1:1 ones. The detector D2 is not used for a three-detector
scheme by removing the beam splitter B2 (the dashed frame).

of the detectors is � = η1 − η2 (or η3 − η4), in the usual case
of η = 0.5 and � = 0.02 (where η is the total efficiency of the
system) the calculated deviation of Mandel’s Q factor is about
10−5 [43, 44]. In the real system, the unbalance � is around
2% and the influence imbalance is negligible.

The photon distribution of the transmitted beam after the
B0 is [1, 45, 46]

Ptr(m) =
∞∑

n=m

Pin(n)
n!

m!(n − m)!
ηm(1 − η)(n−m), (3)

where Pin(n) is the photon number distribution of the incident
light. The dark counts of the detector and background
grey light are both Poissonian which can be simulated as a
background light |ϕ〉 with Poissonian distribution [37] and its
weak average number is γ = |ϕ|2. The beam mixed with this
weak background has a photon number distribution [47]

Pmix(L) =
L∑

m=0

γ (L−m)

(L − m)!
e−γ Ptr (m). (4)

Here, L is the total number of photon incident on B1 and
if I photons are transmitted, then L−I photons are reflected.
These I photons arrive at the detector D1 and for those L−I
photons incident on B3 there are M photons detected by D3

and L − I − M by D4. The joint probability of detecting I,
M and L − I − M photons at D1, D3 and D4, respectively,
can be written as P(I,M,L − I − M). For such a binary
response single-photon detector, there is only one count within
a response period (including the response time and the dead
time) for one or more than one incident photons, so there are
totally eight possible photon probabilities:

P(1, 1, 1) =
∞∑

L=3

Pmix(L)

L−2∑
I=1

(L−I )−1∑
M=1

×
(

1

3

)L
L!

I !M!(L − I − M)!
, (5a)

P(1, 1, 0) = P(1, 0, 1) = P(0, 1, 1)

=
∞∑

L=2

Pmix(L)

L−1∑
I=1

(
1

3

)L
L!

I !(L − I )!
, (5b)

P(1, 0, 0) = P(0, 1, 0) = P(0, 0, 1) =
∞∑

L=1

Pmix(L)

(
1

3

)L

,

(5c)

P(0, 0, 0) = Pmix(0). (5d)

For any specific light source, the ratio given by
equation (1) and measured mean photon number are

�III =
N
√

PIII(2)

N
√

PIII(1) + N
√

PIII(2) + N
√

PIII(3)
, (6a)

〈n〉III =
∞∑

n=0

nP (n) = 3P(1, 1, 1) + 2[P(0, 1, 1)

+ P(1, 1, 0) + P(1, 0, 1)] + [P(1, 0, 0) + P(0, 1, 0)

+ P(0, 0, 1)] = 3PIII(3) + 2PIII(2) + PIII(1). (6b)

Here, PIII(i) (i = 0, 1, 2, 3) denotes the joint probability
of detecting i photons with these three SPCMs.

For an input coherent state |α〉, the photon distribution is

Pin,C(n) = αn e−α

n!
, (7)

where α is the mean photon number. For a given overall
detection efficiency η and background γ , according to
equations (3), (4) and (7) we obtain the probability Pmix,C(L)

of L photons before B1:

Pmix,C(L) = 1

L!
e−(γ +αη)(γ + αη)L. (8)

According to (5) and (6b) the detected photon
probabilities and mean photon number are

PIII,C(3) = e−(γ +αη)[e(γ +αη)/3 − 1]3, (9a)

PIII,C(2) = 3 e−(γ +αη)[e(γ +αη)/3 − 1]2, (9b)

PIII,C(1) = 3 e−(γ +αη)[e(γ +αη)/3 − 1], (9c)

PIII,C(0) = e−γ−αη, (9d)

〈n〉III,C = 3 − 3 e−(γ +αη)/3. (9e)

Substituting equation (9) into relation (6a), we obtain

�III,C =
N
√

PIII,C(2)

N
√

PIII,C(1) + N
√

PIII,C(2) + N
√

PIII,C(3)

=
N
√

3e(γ +αη)/3 − 3
N
√

(e(γ +αη)/3 − 1)2 + N
√

3 e(γ +αη)/3 − 3 + N
√

3
. (10)

Equation (10) gives a bound for the coherent light and for
any classical Poissonian distributions. If N = 1, we have the
maximum value of �III,C , which is

�N=1
III,max,C = 2

√
3 − 3 � 0.464, (11)
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with the mean photon number αN=1
max = ln(10 + 6

√
3) � 3.015

in the ideal case, i.e. γ = 0, η = 1. In general, αN
max

depends on the background, the overall efficiency and the
number N we choose. From equation (10) we find that the
maximum �III,max,C (N � 1) does not change in the range
of αN � (αN

max − γ )/η. Note that the maximum �N
III,max,C

gives the bound of a nonclassical criterion based on the three-
detector scheme and for any state with �N

III > �N
III,max,C , it is

nonclassical.
If the input field is a single-mode thermal state, the photon

distribution is a well-known Bose–Einstein distribution:

Pin,T (n) = βn

(1 + β)n+1
, (12)

where β = [exp(h̄ω/kBT )−1]−1 is the mean photon number.
The thermal field shows the bunching effect and super-
Poissonian photon distribution. From equations (3), (4) and
(12), the probability Pmix,T (L) of L photons before the beam
splitter B1 is

Pmix,T (L) =
L∑

m=0

γ L−m

(L − m)!
e−γ (βη)m

(1 + βη)m+1
. (13)

Similarly, according to equations (5) and (13), we obtain
the following ratio for an input thermal state:

�III,T =
N
√

PIII,T (2)

N
√

PIII,T (1) + N
√

PIII,T (2) + N
√

PIII,T (3)

=
{

1 +

(
3 e−γ

1 + βη
+

9 e−γ /3

3 + βη
− 18 e−2γ /3

3 + 2βη

)− 1
N

×
[(

9 e−2γ /3

3 + 2βη
− 3 e−γ

1 + βη

) 1
N

+

(
1 − e−γ

1 + βη
− 9 e−γ /3

3 + βη
+

9 e−2γ /3

3 + 2βη

) 1
N

]}−1

. (14)

It is easy to prove from equation (14) that �N=1
III,max,T �

�N=1
III,max,C = 2

√
3 − 3 for any background and efficiency.

Actually, �N=1
III,max,T = 6 − 4

√
2 at βN=1

III,max,T = 3√
2

in the ideal
case of γ = 0, η = 1. Moreover, the bound can be extended
to �N

III,max,T � �N
III,max,C for N > 1.

The SVS is a typical nonclassical state although its
photon distribution can show super-Poissonian with Mandel’s
Q factor greater than 0. A single-mode SVS can be written
as |ξ 〉 = Ŝ(ξ) |0〉. Here, the squeezing operator Ŝ(ξ) =
exp(ξ ∗â2/2 − ξ â+2/2), ξ = r exp(iθ) and r = |ξ | is the
squeezing parameter. The photon number distribution of the
SVS can be expressed as [48]

Pin,SVS(2n) = [tanh(r)]2n(2n)!

cosh(r)(n!2n)2
, (15)

where the mean photon number 〈nsvs〉 = sinh2(r).
Similarly, we have

Pmix,SVS(L)

=
L∑

m=0

γ (L−2m)η2m(2m)!F [ 1
2 +m, 1

2 +m, 1
2 ; (η − 1)2tanh2(r)]

(L − 2m)! eγ (2mm!)2Sech−1(r)tanh−2m(r)
,

(16)

where F(a, b, c; z) = ∑∞
k=0

(a)k(b)k
(c)k

zk

k! is the hypergeometric
function.

In figure 2, we plot the ratio �III as the functions of the
mean photon number (figure 2(a)) and the overall efficiency
(figure 2(b)) according to equations (10), (14) and (16) for the
coherent state (black solid curves), thermal state (red dashed
curves) and SVS (blue dash-dotted curves), respectively.
Without loss of generality, we have chosen N = 1 and N = 5
for comparison. Here, we have used the general specifications
of the commercial SPCM (Model SPCM-AQRH-15-FC from
PerkinElmer) with a quantum efficiency of about η = 0.5 at
852 nm and a usual background of γ = 0.01. It shows that
the bound �III,max,C cannot be broken for coherent and thermal
states, but this bound is broken for the SVS. In figure 2(b), we
have shown how �III varies along with the overall efficiency
for certain background and mean photon number (γ = 0.01,
α = 10). The bounds are �N=1

III,max,C = 2
√

3 − 3 � 0.464

and �N=5
III,max,C = 10

√
3

10
√

3+2
� 0.358 with the corresponding mean

photon number αIII,max = 3 ln(1 +
√

3). Again, both the
coherent and thermal states are bounded by �III,max,C but
the classical bound can be broken for the SVS even for low
efficiencies around 10%. The breaking of bound �III,max,C

confirms the nonclassicality of the SVS. For a squeezing of
10 dB [49] and a background of 0.01 the required efficiency
is about 24%, which is available for commercial SPCMs [38].
By using the ratio with N > 1, the region of the mean photon
number over which the bound can be broken is obviously
broadened, and the requirements for detection efficiency and
incident power are lowered. As shown in figure 2(a), the
nonclassical region of the mean photon number is from 0.03
to 4.68 for N = 5, but it is from 0.19 to 4.22 for N = 1. The
result also shows that the larger the number of N, the smaller
the depth the bound to be broken.

The Fock state is another typical quantum state which
can be utilized in ultra-high sensitive measurement [6, 50]
and linear-optics quantum computation [51] and now there are
many proposals to generate Fock states with a large number
of photons [52, 53]. The measurement of the Fock state with
a large number of photons is a challenge. If the input field is
a Fock state |n〉, we have Pin,F (n) = 1 (n � 1). Considering
the total detection efficiency and the background, the photon
number distribution can be written as

Pmix,F (L) =
L∑

m=0

γ (L−m)n!

(L − m)!m!(n − m)!
e−γ ηm(1 − η)n−m.

(17)

By using equations (5) and (17), similarly, we can find the
ratio �III,F for Fock states

�III,F =
N
√

PIII,F (2)

N
√

PIII,F (1)+N
√

PIII,F (2)+N
√

PIII,F (3)

=
[

N
√

3 e−2γ /3(1−2η/3)n−3 e−γ (1−η)n

N
√

3 e−γ (1−η)n−6 e−2γ /3(1−2η/3)n+3 e−γ /3(1−η/3)n

+N
√

1−e−γ (1−η)n+3 e−2γ /3(1−2η/3)n−3 e−γ /3(1−η/3)n
+1

]−1

.

(18)
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Figure 2. Theoretical analysis based on three SPCMs for N = 1
(upper) and N = 5 (lower): (a) �III versus mean photon number for
various states (η = 0.5 and γ = 0.01). (b) �III as a function of
overall efficiency for various states (γ = 0.01 and the mean photon
number is 10). Black dotted line: the classical bound; black solid
curve: coherent state; red dashed curve: thermal state; blue
dash-dotted curve: squeezed vacuum state. (c) Maximum value
�III,max,F versus photon number of the Fock state with efficiencies
η = 1 (solid circles) and η = 0.5 (open squares).

For a perfect system with η = 1, and γ = 0, the
criterion presented here is valid except for n = 1, for
which �N

III,max,F |n=1= 0. But this does not mean that the
nonclassical features of the Fock states, for example, the
well-known single-photon state |1〉, cannot be extracted with
our system. Actually, by mixing the Fock states with the
Poissonian background light, the bound can be broken. For
example, we can easily obtain �N=1

III,max,F |n=1= 1/2 with γ =
3 ln(2), which certainly breaks the classical bound given by
equation (11). In figure 2(c), we have given the maximum
�III,max,F as a function of photon numbers, again, for N = 1
and 5. It shows that for different efficiencies (η = 1 and
η = 0.5) �III,max,F can break the bound of �III,max,C , which
proves the nonclassicality extraction of the Fock states. In
general, the higher the overall efficiency, the deeper the bound
is broken. By choosing a larger N, one can again reduce

the demands on detection efficiency and broaden the region
of the photon number over which the ratio is beyond the
classical bound. For a given single-photon state and the overall
efficiency of η = 0.5, the ratio is �N=5

III,max,F |n=1� 0.36 with a
background of γ � 2.36, which is beyond the bound.

The above analysis can be extended to the double HBT
configuration with a total of four SPCMs by just inserting
one more beam splitter and detector (see the dashed frame in
figure 1). The treatment is similar to the above. For I photons
arriving at the beam splitter B2 there are K photons detected by
D1 and I−K by D2. In this case, there are total 16 probabilities.
The new classical bounds for this double-HBT scheme can be
obtained. In the case of N = 1, we have �N=1

IV,max,C = 3/7
with α = 4 ln(2) for the ideal measurement (γ = 0, η = 1).
Let us again consider the actual experimental situation with
γ = 0.01, η = 0.5 and compare the results (here we focus
on N = 1, and the results are similar for N > 1) with the
previous scheme by PNRD [14] and the three-detector scheme
discussed above. The results are shown in figure 3. It shows
the ratio � versus the mean photon number for a coherent state
(figure 3(a)), thermal state (figure 3(b)) and SVS (figure 3(c)),
respectively. Figure 3(d) shows the maximum �F,max for the
Fock state as a function of photon number (in this case the
total efficiency is assumed to be 0.5). For these three cases,
the corresponding classical bounds are different. For PNRD,
the bound is �N=1 =

√
6

4+
√

6
� 0.38, while for the schemes with

three and four binary-response photon detectors, the bounds
are �N=1

III � 0.464 and �N=1
IV = 3/7 � 0.429, respectively.

All of these bounds could be used to qualify the nonclassical
photon statistics. It is clear that for coherent and thermal states,
whatever the situations are, the bounds cannot be broken. In
the case of γ = 0.01, η = 0.5 as shown in figure 3(c), it
should be noted that for the SVS, with four SPCMs, the bound
can be broken when the squeezing is higher than 2.81 dB.
The maximum value appears at a squeezing of about 7 dB,
corresponding to 〈nsvs〉 ≈ 0.8, for an efficiency of 50% and a
background of 0.01. Even if the efficiency is as low as 20%,
the bound can still be broken for the present best SVS with 12.7
dB [54] and a background of 0.01. In the scheme of PNRD,
as shown by Waks et al, the overall efficiency must be higher
than η � 0.55 in order to break the corresponding bound [14].
For the Fock state (see figure 3(d)), the bounds can be broken
for all of the three cases discussed above. In the three- or
four-SPCM scheme, the photon number range for which the
bound is broken is wider than that of the PNRD scheme. This
implies that the requirement for detection efficiency based
on the system of multiple binary response photon detectors
is much lower than that of the PNRD. All of this suggests
that, based on the multiple binary-response photon detector
system, one can directly measure the nonclassicality of photon
statistics with good performance and low requirements for
detection efficiency.

3. Experiment

Since right now we have no squeezed light at the wavelength
for our SPCMs, we have tested the about discussion by

5



J. Phys. B: At. Mol. Opt. Phys. 44 (2011) 205502 Y Guo et al

0.6

0.4

0.2

0.0
1086420

 PNRD
 Three SPCMs (N=1)
 Four SPCMs (N=1)

(c)

<nsvs>

0.5

0.4

0.3

10987654321

 PNRD
 Three SPCMs (N=1)
 Four SPCMs (N=1)

nF

(d)

0.5

0.4

0.3

0.2

0.1

0.0
9630

 PNRD
 Three SPCMs (N=1)
 Four SPCMs (N=1)

(a) 0.5

0.4

0.3

0.2

0.1

0.0
1086420

 PNRD
 Three SPCMs (N=1)
 Four SPCMs (N=1)

(b)

Figure 3. Ratio of � as a function of mean photon number for N = 1, based on the double HBT scheme (black solid curves), three-SPCM
scheme (blue dash-dotted curves) and PNRD scheme (red dashed curves) for different light fields: (a) coherent state, (b) thermal state, (c)
squeezed vacuum state and (d) Fock state (η = 0.5). We have chosen γ = 0.01, η = 0.5 in (a), (b) and (c). The corresponding bounds
(horizontal line) for the three schemes are also shown.

Figure 4. Schematic of the experimental setup. CTDL: continuously tunable diode laser. ISO: Isolator. RGGD: rotating ground glass disk.
Bi (i = 1, 2, 3): beam splitters. Di (i = 1, 2, 3, 4): single-photon-counting modules, SPCMs. DAS: data acquisition system. λ/2:
half-wave plate. PBS: polarized beam splitter. L: optical lens.

measuring the ratio � experimentally based on the four-
SPCM scheme for various mean photon numbers of the
coherent and thermal states. The experiment setup is shown in
figure 4. A continuously tunable diode laser operating in
a single longitudinal mode at 852 nm is used as the laser
source. The beam goes through an optical isolator. A half-
wave plate and a polarized beam splitter (PBS) are used to
control the intensity. The beam is coupled into a single-mode
fiber which is used as a spatial filter. After an attenuator,
the beam enters into a pseudo-thermal light generation system
[55] (shown inside the dashed box in figure 4), which consists

of a rotating ground glass disc and an aperture. The light
power is controlled so that the photon counting rate is below
3 × 106 counts s−1, which is the maximum allowed counting
rate of each SPCM. B1, B2, B3 are 1:1 beam splitters. The
photons eventually arrive at four SPCMs: D1, D2, D3 and
D4 (SPCM-AQR-15, PerkinElmer Optoelectronics). The
quantum efficiency of the module is 49% ± 1% at 852 nm
and the dark count is about 90 counts s−1. The background
of the system γ is about 0.01. The outputs of the SPCMs
go to a data acquisition system (P7888, Fastcomtec GmbH).
The detector and the data card are triggered together by a
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Figure 5. The measured ratio � for coherent (red solid circles) and
thermal light (blue open squares) versus the mean photon number,
based on the four-SPCM scheme (N = 1, 5). The red solid and blue
dashed curves are theoretical fittings.

pulse generator, and the photon count statistical analysis is
performed. The value of N (N = 1, 5) is modified by different
data processings with the same experiment setup. The results
(N = 1, 5) are shown in figure 5. The total acquisition time is
1 s. PIV(i) (i = 0, 1, 2, 3, 4) is extracted from the probability
of registering i clicks (i.e. the coincidence of clicking i
detectors) in the acquisition time. The detectors are used in
the 3 ns coincidence window. The response period (including
the response time and the following dead time) is 55 ns. We
change the count rate from 5 × 103 to 3 × 106 counts s−1

by changing the incident power. The red solid circles are
the experimental data for coherent light while the blue open
squares are for thermal light. The error bars are too small to be
seen. The solid and dashed curves are the theoretical fittings
based on the above analysis.

Clearly, we can see that the measured � for the coherent
and thermal beams are bounded by �N=1

IV,max,C = 3/7 and
�N=5

IV,max,C � 0.352, respectively. The results agree with the
theoretical prediction very well for both the coherent and
thermal states. In fitting the experimental results we have
considered that the input light is not pure thermal or coherent
states, but a mixture of thermal and coherent light [37, 56, 57].
The proportion is mainly determined by the rotating ground
glass system and the background of the environment [57–59].
When the input light is a coherent field, the mixed model
allows one to consider the coherent part as a signal and a small
thermal part as random Gaussian noise. Thus, the probability
distribution of the input field is [56]

Pin,Mix(n) = βn

(1 + β)n+1
exp

( −α

β + 1

)

×
[

1F1

(
−n; 1; −α

β2 + β

)]
, (19)

where 1F1 is a confluent hypergeometric function. α and
β are the mean photon number of coherent and thermal
light, respectively. Based on equation (19) the best fittings

between the theoretical analysis and the experiment results
are obtained and shown in figure 5. The red curve is for
the coherent light with 0.3% of thermal light mixed in.
The measured mean photon number corresponding to the
maximum �max,C is 5.64 ± 0.01, which is in accordance with
the theoretical prediction 5.63 based on the present efficiency
and background. The blue dashed curve corresponds to the
thermal light with 1% of coherent light mixed in. In both
cases, the theoretical results are in good agreement with the
experimental data. In addition, the detector efficiency of
49% ± 1% has been taken into account. The maximum
counting rate of the detector prevents the system from reaching
a relatively high mean photon number. There is still a minor
discrepancy between the theory and experiment for thermal
light, especially at high counting rate. This may be due to
the saturation of multi-photon counting of the detectors for
thermal light at relative intense light.

4. Conclusion

In conclusion, we have presented a nonclassicality criterion
for photon statistics based on multiple binary-response photon
detectors, and have compared the result with that of the PNRD.
It is shown that even without PNRD, the nonclassicality can
still be measured directly by photon countings based on either
three or four SPCMs. The bound of �III � 0.476 for three
binary photon detectors and �IV = 3/7 for four detectors are
obtained. Moreover, the requirement for the overall efficiency
is less stringent. We have performed experiments based on
the four-SPCM scheme with coherent and thermal light and
verified the bound. The results are in good agreement with
the theoretical analysis. These new bounds of nonclassicality
could be used as a test for the quantum features of the light.
Because of the comparative simplicity of the setup, it is feasible
to implement this scheme in quantum information processing.
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