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Quantum Entanglement Dynamics of Two Atoms in Two Coupled Cavities∗
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Abstract Quantum entanglement dynamics for two atoms trapped in two coupled cavities is investigated. Numerical
results show that the present of the two atomic excitations is mainly accounted for the entanglement-sudden-death (ESD)
effect with the two cavities initially in the vacuum. The entanglement can also be controlled by the hopping rate and
the imbalances between the two atom-cavity coupling rates.
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1 Introduction

Quantum entanglement is one of the fundamental fea-

tures that distinguish quantum systems from their classi-

cal counterparts and plays an important role in quantum

information science,[1] such as quantum teleportation,[2]

quantum computing,[3] and so on. However, the real phys-

ical system is inevitable to interact with the environment,

leading the entanglement to deteriorate. Hence, it is of

great importance to study the quantum entanglement dy-

namics (ED). Recently, Yu and Eberly have shown that

two initially entangled particles without interaction be-

tween each other can decay to 0 in a finite time, which is

much shorter than that of their spontaneous emission.[4]

This phenomenon is known as the entanglement sudden

death (ESD).[5−6] On the other hand, two initially sep-

arated atoms could be entangled in a finite time, which

is termed the entanglement sudden birth (ESB).[7] These

quantum entanglement features have been explored in di-

verse scenarios,[8−19] but the nature of ESD and ESB is

still not very explicit.[20]

Cavity quantum electrodynamics (CQED), known as

an effective system to study the interaction between light

and atoms (or ions, atomic ensembles etc.) in a con-

fined space, is thought to be a potential candidate for the

demonstration of quantum information processing.[21−22]

Based on CQED, there are several proposals suggested for

the research of ED via J-C models and the generalized J-

C models.[23−28] However, in most of these schemes, the

investigated atoms are usually trapped in one cavity or

two isolated cavities, respectively.

Recently, much attention has been focused on the

coupled-cavities arrays,[29−30] for which some potential

technologies have been demonstrated in experiment.[31−32]

The system is thought to be suitable for building a large-

scale architecture for quantum information processing.[33]

In such systems, atoms are usually used for the storage

of quantum information and cavity modes act as carrying

qubits. For this reason, it is important to study the ED for

atoms on the basis of the coupled-cavities arrays. For sim-

plicity, in this paper, we only consider two cavities coupled

directly and there is a two-level atom inside each cavity.

These two atoms are initially prepared in the superpo-

sition of the two-excitation state and the zero-excitation

state, i.e. Φ-type Bell states. The numerical results show

that the entanglement dynamics is strongly affected by

the probability of two-excitation state of the initial state,

the hopping rates, and the ratio between two atom-cavity

coupling rates. The duration for the disentanglement be-

fore recovery can be enhanced via the increase of the two-

excitation state probability when the atom-cavity coupling

rate and the hopping rate are both real, which is different

from that obtained via the two atoms individually inter-

acting with two isolated cavities,[34] where the quantum

entanglement is necessary for the ESD when the cavities

are initially in the vacuum. In addition, we also show

that the entanglement dynamics can be controlled by the

hopping rate (including the amplitude and the phase) be-

tween two cavities and the ratio between two atom-cavity

coupling rates.

2 Model for Two Two-Level Atoms Trapped

in Two Coupled Cavities

Let us consider a two-cavity system shown in Fig. 1.

There are two identical cavities and each one has a two-
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level atom holding the excited state |e〉 and the ground

state |g〉.[35] The two cavities are coupled directly and
each of them is resonant with the atomic transition. With-
out loss of generality, we use the subscript k (k = 1, 2) to
identify each atom and each cavity. In the rotating-wave
approximation, the interaction Hamiltonian is expressed
as[36]

H =
∑

j=1,2

gjσ
+
j aj + νa†

1a2 + H.c. , (1)

where g (ν) and a (a†) represent the atom-cavity cou-
pling rate (the hopping rate between two cavities) and

the annihilation (creation) operator for the cavity mode,
σ− = |g〉〈e| (σ+ = |e〉〈g|) is the raising (lowing) operators
for atoms, and H.c. stand for the conjugate terms. For
simplicity, we suppose that the atom-cavity coupling rates
are both real, while the hopping rate can be chosen to be

a complex number. Initially, the atoms are considered to
be prepared in the Φ-type Bell state

|Φ(α)〉 = cosα|ee〉12 + sin α|gg〉12 , (2)

and both cavities are in the vacuum state |00〉. Thus, the

state for the whole system is

|S〉 = (cosα|ee〉 + sin α|gg〉)|00〉 , (3)

where the subscripts have been eliminated.

We define the operator

N =

2
∑

j=1

(1

2
σz,j + a†

jaj

)

with σz = |e〉〈e|−|g〉〈g| being a Pauli operator and one can

easily prove that [N, H ] = 0. Thus, under the action of

the interaction Hamiltonian (1), the zero-excitation state

|gg〉|00〉 would not change since there is no excitation and

the time evolution for the two-excitation state |ee〉|00〉 will

be confined in the subspace {|ee〉|00〉, |eg〉|01〉, |ge〉|10〉,
|eg〉|10〉, |ge〉|01〉, |gg〉|20〉, |gg〉|02〉, |gg〉|11〉}. This leads

to the interaction Hamiltonian

H ′ =





























0 g2 g1 0 0 0 0 0

g2 0 0 ν 0 0 0 g1

g1 0 0 0 ν 0 0 g2

0 ν∗ 0 0 0
√

2g1 0 0

0 0 ν∗ 0 0 0
√

2g2 0

0 0 0
√

2g1 0 0 0
√

2ν

0 0 0 0
√

2g2 0 0
√

2ν

0 g1 g2 0 0
√

2ν∗
√

2ν∗ 0





























. (4)

As a result, the state of the whole system state at time t can be given by

|S(t)〉 = Cee00(t)|ee〉|00〉 + Ceg01(t)|eg〉|01〉 + Cge10(t)|ge〉|10〉 + Ceg10(t)|eg〉|10〉 + Cge01(t)|ge〉|01〉
+ Cgg20(t)|gg〉|20〉 + Cgg02(t)|gg〉|02〉 + Cgg11(t)|gg〉|11〉 + sinα|gg〉|00〉 , (5)

where Ckk′ll′ (t) (k, k′ = e, g and l, l′ = 0, 1) is complex and

time-dependent. Since the explicit expressions of these

parameters are very complicated, here we skip the details

and give our results in terms of numerical calculations.

By tracing the two cavity fields, the density matrix for

the two atoms, in the basis of {|ee〉, |eg〉, |ge〉, |gg〉}, reads

ρ =











a 0 0 w

0 b z 0

0 z∗ c 0

w∗ 0 0 d











, (6)

with

a = |Cee00(t)|2 , b = |Ceg01(t)|2 + |Ceg10(t)|2 ,

c = |Cge10(t)|2 + |Cge01(t)|2 ,

d = sin2 α + |Cgg20(t)|2 + |Cgg02(t)|2 + |Cgg11(t)|2 ,

z = Ceg01(t)C
∗
ge01(t) + Ceg10(t)C

∗
ge10(t) ,

w = sin αCee00(t) . (7)

Fig. 1 Sketched setup for two atoms individually
trapped in two coupled cavities.

3 Entanglement Dynamics of Two Atoms

In order to investigate the entanglement dynamics of

the bipartite system, we use Wootters concurrence to

quantify the degree of the quantum entanglement.[37] The

concurrence of the density matrix ρ is given by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} , (8)

with λi (i = 1, 2, 3, 4) being the square root of the eigen-

values of the non-Hermitian matrix ρ(σy ⊗ σy)ρ∗(σy ⊗ σy)

in decreasing order, where ρ∗ is the complex conjugation
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of ρ in the standard basis and σy is the Pauli matrix ex-

pressed as
( 0 −i

i 0

)

. According to Ref. [38], we can quickly
obtain the concurrence for the X-class density matrix de-

scribed in Eq. (6),

C(ρ) = 2 max(0, C1, C2) , (9)

with

C1 = |z| −
√

ad = |Ceg01C
∗
ge01 + Ceg10C

∗
ge10|

− |Cee00|
√

sin2 α + |Cgg20|2 + |Cgg02|2 + |Cgg11|2 ,

C2 = |w| −
√

bc = |sin α Cee00|

−
√

(|Ceg01|2 + |Ceg10|2)(|Cge10|2 + |Cge01|2) . (10)

For the sake of simplicity, we first assume ν is real and

study the entanglement dynamics of the bipartite system

in two diverse situations: the symmetrical case where the
two atom-cavity coupling rates are equal (g1 = g2 = g)

and the unsymmetrical one (g1 6= g2) and then we gener-

alize the hopping rate to be a complex number (|ν| e iθ) to
investigate how the phase of the hopping rate (θ) affect

the entanglement dynamics.

3.1 Symmetrical Case (g1 = g2 = g) with ν Being
Real

Firstly, the evolution of the concurrence for various ini-
tial atomic states (different parameters α) can be investi-

gated via numerical simulation. For simplicity, we firstly

assume the hopping rate is ν = g. The time evolution of

the concurrence as the function of the scale time gt/π and

α is plotted in Fig. 2, where we have confined α within the

range [0, π] without loss of generality. The result shows (i)

The initial separate state of two atoms (cosα = 0, 1, i.e.

α = 0, π/2, π) cannot be entangled at any time; (ii) The

maximal entanglement can exist only when the two atoms

are initially entangled maximally; (iii) The initial entan-

glement of the two atoms can fall abruptly to zero and will

remain zero for a period of time before it recovers. The

larger the probability of the two excitations (cos2 α 6= 1),

the longer the state will be in the disentangled separable

state.

Fig. 2 The time evolution of the concurrence as the
function of the scale time gt/π and α, where g1 = g2 = g
and ν = g.

Fig. 3 The concurrence versus the scale time gt/π and the ratio ν/g, where g1 = g2 = g and α = (a) 0, (b)
π/12, (c) π/4, (d) 5/12.
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Secondly, the concurrence versus the scale time gt/π

and the ratio ν/g is taken into account in Fig. 3. To
do so, the hopping rate ν can be controlled experimen-
tally by controlling the length of the cavity in princi-
ple, which can be considered as an adjustable parame-

ter. For simplicity, we choose α = (a) 0 (b) π/12 (c)
π/4, (d) 5/12 again. The numerical results demonstrate
(i) the separable states |ee〉 (α = 0, π) and |gg〉 (α = π/2)
can never be entangled no matter what the hopping rate

is (Fig. 3(a)); (ii) for the initial entangled states, the re-
sult is shown in the other three figures (Figs. 3(b), 3(c),
and 3(d)), where each picture is divided into two regions
with the boundary ν/g = 1. In the region of ν/g < 1,

the ESD effect can always take place for the initial en-
tangled state within 0 < α < π/4, but the dynamics of
the ESD is dependent on the initial two-excitation state
within π/4 ≤ α < π/2. The larger the two-excitation-

state probability, the longer time interval the ESD occurs.
While for the case of ν/g > 1, the entanglement can sud-
denly disappear when ν/g is small. The ESD effect is
most obvious at about ν/g = 1.7 and this effect will even-

tually disappear as ν/g increases. For this reason, we can
conclude that there exists a decoherence-free state (DFS)

when ν/g is large enough. It is actually true because there

is no any energy exchange in the case of the large detun-

ing between atom-cavity coupling rate and the hopping

rate (we call it ∆), where ∆ is closely related to the initial

two-excitation state. The larger the initial two-excitation-

state probability, the larger hopping rate will be required

for satisfying the large-detuning condition.

3.2 Unsymmetrical Case (g1 6= g2) with ν Being

Real

We now consider entanglement dynamics of the sys-

tem influenced by the imbalances between g1 and g2. The

concurrence as the function of the scale time gt/π and

the ratio g2/g1 is depicted in Fig. 4, where we have set

g1 = ν = g and α = (a) 0 (b) π/12 (c) π/4, (d) 5π/12.

It is clearly seen that the separable two atoms, initially

in the two-excitation state |ee〉, can be entangled with a

delayed time in the case of g2 6= g1 (g2 6= 0), i.e. the ESB

effect occurs. While for the initial entangled state, the

sudden death effect can take place much more easily in

the small ratio g2/g1 and large probability of the initial

two-excitation state.

Fig. 4 The concurrence versus the scale time gt/π and the ratio g2/g1, where g1 = ν = g and α = (a) 0, (b)
π/12, (c) π/4, (d) 5π/12.

3.3 ED with ν being Complex

With the investigation, we make a conclusion that the

phase of the hopping rate can also affect the ED, and even

destroy the symmetry similar to the case of g1 6= g2. For

the sake of the simplicity, we only consider the ED with

the initial separate atomic state |ee〉 in the case of ν be-

ing complex. We know that there is no any ESB exist

when g1 = g2 and the initial state |ee〉|0〉 as shown in

Subsect. 3.1. In the following passage, let us show how

this phase makes an influence on the entanglement evo-
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lution, which is depicted in Fig. 5 where we have set

g1 = g2 = |ν| = g. The illustration tells us ESB does not

occurs only when θ = nπ with n being an integer. In other

words, we can prepare the atomic entangled state even

when the initial atomic state both in the excited state in

the case of the symmetrical system with the adjustment

of the hopping rate’s phase.

Fig. 5 The concurrence versus the scale time gt/π and
phase of the hopping rate θ, where g1 = g2 = |ν| = g and
α = 0.

4 Discussion

We have studied the entanglement dynamics based on

the system with two atoms and two cavities. The two

cavities are coupled directly and both are initially in the

vacuum states. The entanglement dynamics shows dis-

tinctive features for different initial atomic states, the ra-

tios g2/g1 and the hopping rates. The ESD and ESB are

more obvious when the two atoms are prepared initially in

the excited states, but this behavior is also dependent on

the symmetry of the two atom-cavity interaction system

as well as the hopping rate including its amplitude and

phase. If the system is completely symmetry (g1 = g2)

and the phase of hopping rate is set to θ = nπ (n is an

integer), there will be no any ESB effect occurred for the

separable atoms. This result is similar to the phenomenon

obtained from the two atoms individually interacting with

two isolated vacuums. However, the ESB phenomenon

exist in the case of θ 6= nπ. We also show that the

ESD effect does not occur when the hopping rate is large

enough. A decoherence-free state may exist in the large-

detuning condition, which is determined by the probabil-

ity of the initial two-excitation state. Although the above-

mentioned features of the quantum entanglement could

not be well explained quantitatively at this moment, we

still see that entanglement dynamics is strongly affected

by the initial excitations of the two atoms, the imbalance

of the two atom-cavity coupling rates and the hopping

rates between two cavities. The proposal presented here

is feasible as the development of the modern technology.

The two coupled cavities can be achieved either by using

the adjacent cavities or optical fiber connected cavities.[30]

The two-level state of atoms could be chosen as, for ex-

ample, the excited state |6P3/2, F = 4〉 and the ground

state |6S1/2 , F = 3〉 or |6S1/2, F = 4〉 of the cesium atoms

(133Cs), respectively.[36]

5 Summary

We have proposed a scheme to study the entanglement

dynamics for two atoms interacted with two coupled cavi-

ties. Based on the numerical simulation, we conclude that

the excitations of the atoms play the important role in the

entanglement dynamics. The larger probability of the ini-

tial two-excitation state, the more obvious the ESD effect

occurs. It shows that the entanglement dynamics is also

closely related to the hopping rates including its ampli-

tude and phase and the imbalance of the two atom-cavity

systems. The atomic entanglement dynamics has shown

distinctive features with different conditions and differ-

ent initial atomic states, which can help us to understand

these interesting quantum behaviors.
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