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Abstract
The efficiency of continuous-variable quantum teleportation is typically quantified by fidelity
especially in experiment. From the original definition of fidelity in two pure states, we give an
expansion of fidelity which is related to the variances of output and input states. With a
coherent or a squeezed input state, it is convenient to quantify the quantum teleportation
experiment, since the variances of quadrature components of the input and output states are
measurable. Furthermore, the fidelity was discussed when the quantum channel lies in the
phase- and amplitude-noisy environment, which is unavoidable in experiment, and this showed
that the effect of phase noise on teleportation is more sensitive than that of the amplitude-noisy
environment. The classical fidelity limit of squeezed state quantum teleportation is also
obtained when the entanglement resources do not exist.

(Some figures may appear in colour only in the online journal)

Quantum teleportation is one of the most important
manifestations of quantum mechanics [1, 2] and plays a central
role in quantum information science, which can transmit
unknown quantum states between distant users without
sending quantum states directly. Quantum teleportation was
originally proposed and realized in a discrete variable domain
[3, 4]. Recently, it was extended to the teleportation of
continuous variables [5]. Braunstein and Kimble [6] gave a
protocol of continuous-variable quantum teleportation for a
coherent state and soon experimentally demonstrated it [7].
Since then, many groups have realized the continuous-variable
quantum teleportation for the vacuum state, coherent states
[8–11] and even a squeezed state [12]. Recently, Mišta Jr et al
[13] investigated how to preserve the negative Wigner function
of the single photon state in continuous-variable quantum
teleportation. In 2011, Lee et al realized the continuous-
variable quantum teleportation of the Schrödinger cat
state [14].

The fidelity, which is the overlap between the input
and output states, is used to quantify the quality of the
quantum teleportation. A fidelity expression for the coherent-
state quantum teleportation with the quantum channel (EPR
state) was given, and experimentally measured [7]. For
nonclassical state quantum teleportation, such as a squeezed
state, an expression for the fidelity has been proposed
[15–18], which depends on the squeezing parameter of the
input state and the correlation parameter of the EPR state
of the quantum channel. However, it is not very useful in
experiment because the squeezing parameter of the input
state and the correlation parameter of the EPR state are not
observed directly; experimentally, the measurable quantity is
the variance. If the input state is a coherent state and the
EPR state is a two-mode squeezed vacuum (Wigner functions
of both are Gaussian), the fidelity can be expressed with the
variances of the two quadrature components of the output
state [19].
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The fidelity for a pure input state [5], |αin〉 = 1
2 |xin + iyin〉,

with xin (yin) being the expectation value of the amplitude
(phase) quadrature, is defined by Schumacher F =
〈αin|ρout|αin〉, where ρout is the density operator of the output
state, and it can equivalently be expressed by the overlap of
their Wigner functions:

F = π

∫
d2αWin(α)Wout(α), (1)

where Win(α) and Wout(α) are the Wigner functions of the
input and output states, respectively. If the input state is a
coherent state and the EPR state is a two-mode squeezed
vacuum (Wigner functions of both are Gaussian), the fidelity
can be expressed as [19]

F = 2√
(1 + 〈δ2X̂out〉)(1 + 〈δ2Ŷout〉)

× exp

[
− (xout − gxin)

2

2(1 + 〈δ2X̂out〉)
− (yout − gyin)

2

2(1 + 〈δ2Ŷout〉)

]
, (2)

where 〈δ2X̂out〉 and 〈δ2Ŷout〉 are the quadrature component
variances of the output state, xin and yin (xout and yout) are the
two quadrature component displacements of the input state
(the output state) in the phase space and g is the normalized
gain. The two quadrature variances, 〈δ2X̂out〉 and 〈δ2Ŷout〉, are
measurable quantities. In a quantum teleportation (or quantum
clone) process, the displacement xin (yin) of an input state can
be easily reconstructed at the output station by setting the gains
of classical channels to unity, i.e. xout = xin; yout = yin, so that
the fidelity is peaked:

F = 2√
(1 + 〈δ2X̂out〉)(1 + 〈δ2Ŷout〉)

. (3)

Furusawa et al [7] used this expression to investigate the
fidelity of continuous-variable quantum teleportation for a
coherent input state. The experimental results for the coherent
states fit well with the theoretical calculation expressed in
equation (3). However, if the input state is a nonclassical
state, such as a squeezed state, calculating the fidelity is still a
mystery [12, 13].

In this paper, we will derive an expression with the
quadrature components’ variances of the input and output
states for the fidelity of continuous variables quantum
teleportation with squeezed states as the input. Furthermore,
we will discuss the influence of the noisy environment of the
quantum channel on the fidelity.

In fact, equation (1) defines quantitatively the similarity
of the two states. Based on equation (1), we will consider the
similarity (fidelity) between the two squeezed states.

For a squeezed state with a squeezing parameter s, the
annihilation operator α̂ = X̂ + iŶ can be expressed in terms of
its mean value 〈α̂〉 plus two fluctuating quadrature components,
for example,

α̂ = 〈α̂〉 + δX̂ + iδŶ , (4)

where δX̂ = esX̂ (0) and δŶ = e−sŶ (0) are the quadrature-
phase amplitude operators with the canonical commutation
relation [δX̂, δŶ ] = i/2 and X̂ (0) and Ŷ (0) are the quadrature-
phase amplitude operators of a vacuum mode. This state with

s = 0 corresponds to the coherent state. The Wigner function
of the squeezed (coherent) state is Gaussian, considering the
two squeezed states, α̂1 and α̂2, (their Wigner functions both
are Gaussian):

W1 (x, y) = 2

π

√
〈δ2X̂1〉〈δ2Ŷ1〉

× exp

[
−2 (x − x1)

2

〈δ2X̂1〉
− 2 (y − y1)

2

〈δ2Ŷ1〉

]
, (5)

W2 (x, y) = 2

π

√
〈δ2X̂2〉〈δ2Ŷ2〉

× exp

[
−2 (x − x2)

2

〈δ2X̂2〉
− 2 (y − y2)

2

〈δ2Ŷ2〉

]
, (6)

respectively.
The similarity (fidelity) between α̂1 and α̂2 can be

calculated by using equation (2):

F = π

∫
dx dyWin (x, y)Wout (x, y)

=
∫

dx dy
4

π

√
〈δ2X̂in〉〈δ2Ŷin〉

√
〈δ2X̂out〉〈δ2Ŷout〉

× exp

[
−2 (x − xin)

2

〈δ2X̂in〉
− 2 (y − yin)

2

〈δ2Ŷin〉

]

× exp

[
−2 (x − xout)

2

〈δ2X̂out〉
− 2 (y − yout)

2

〈δ2Ŷout〉

]

= 2√(
〈δ2X̂in〉 + 〈δ2X̂out〉

)(
〈δ2Ŷin〉 + 〈δ2Ŷout〉

)

× exp

⎡
⎣− (xout − xin)

2

2
(

1 + 〈δ2X̂out〉
)− (yout − yin)

2

2
(

1 + 〈δ2Ŷout〉
)
⎤
⎦ . (7)

It can be seen that the fidelity depends not only on the
variances of two states but also on the difference of the two
mean values. Note that the variances of quadrature-phase
amplitudes in equation (7) are normalized by 1/4 with respect
to the definition in equation (4). In the case of the same mean
value of α̂1 and α̂2, i.e. x2 = x1, y2 = y1, respectively, the
fidelity is at maximum:

F
(
α̂1, α̂2

) = 2√
(〈δ2X̂1〉 + 〈δ2X̂2〉)(〈δ2Ŷ1〉 + 〈δ2Ŷ2〉)

. (8)

When α̂1 is a minimum uncertainty state, i.e.〈δ2X̂1〉 ∗
〈δ2Ŷ1〉 = 1, the fidelity becomes

F = 2√(
1 + 〈δ2X̂2〉

〈δ2X̂1〉

) (
1 + 〈δ2Ŷ2〉

〈δ2Ŷ1〉

) . (9)

For a pure coherent state α̂1, due to 〈δ2X̂1〉 = 〈δ2Ŷ1〉 = 1,

equation (9) becomes equation (3), which is widely used to
qualify the coherent quantum teleportation and the quantum
clone [9, 10, 20, 21]. Note that here the similarity (fidelity) is

2
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related to the quadrature variances of the (input and output)
states, which are experimentally measurable.

Considering a squeezed state quantum teleportation, Alice
and Bob share an EPR state in the quantum teleportation.
Usually, this EPR state is a two-mode squeezed vacuum, which
consists of an initially amplitude-quadrature squeezed-vacuum
state and an initially phase-quadrature squeezed-vacuum state
on a 50:50 beam splitter. In the Heisenberg representation, we
have [23]

X̂1 = (
e+rX̂ (0)

1 + e−rX̂ (0)

2

)/√
2,

Ŷ1 = (
e−rŶ (0)

1 + e+rŶ (0)

2

)/√
2,

X̂2 = (
e+rX̂ (0)

1 − e−rX̂ (0)

2

)/√
2,

Ŷ2 = (
e−rŶ (0)

1 − e+rŶ (0)

2

)/√
2.

(10)

The superscript (0) denotes initial vacuum modes and r
is the EPR correlation parameter. With a unity gain in the
quantum teleportation, as seen in [7], the mean value of the
input state is equal to that of the output state. So we can
only consider the fluctuating components of the quadrature
operators. For simplicity, we rewrite equation (4) as

α̂in = δX̂in + δŶin = e+sX̂ (0) + e−sŶ (0). (11)

Alice mixes a part of the two-mode squeezed-vacuum
state, named mode 1, with the input state on a balanced beam
splitter (BS) and measures two commuting quadratures by
means of two balanced homodyne detectors (BHD). Then
she sends the measurement results to Bob who subsequently
applies a unitary transformation to his part of the shared two-
mode squeezed-vacuum state, named mode 2. For an ideal
quantum teleportation (meaning no losses), Bob recovers the
original minimum uncertainty state as

α̂out = X̂out + iŶout,

X̂out = X̂in + (X̂1 − X̂2),

Ŷout = Ŷin + (Ŷ2 + Ŷ2),

(12)

and the variances of the output state are related to the variances
of the operators X̂1 − X̂2, Ŷ1 + Ŷ2 by

〈δ2X̂out〉 = 〈δ2X̂in〉 + 2〈δ2(X̂1 − X̂2)〉,
〈δ2Ŷout〉 = 〈δ2Ŷin〉 + 2〈δ2(Ŷ1 + Ŷ2)〉. (13)

Here, 〈δ2(X̂1 − X̂2)〉 = 〈δ2(Ŷ1 + Ŷ2)〉 = e−2r. Equation
(13) is substituted for equation (8); therefore, the fidelity
becomes

F(α̂in, α̂out) = 1√
(〈δ2X̂in〉 + e−2r)(〈δ2Ŷin〉 + e−2r)

, (14)

which is consistent with the conclusion given by Bowen
[8]. Note that the fidelity expression of equation (14) is
in agreement with the theoretical fidelity expressed by the
squeezing parameter of the input state and the correlation
parameter of the EPR state [15–18]. Furthermore, for an input
squeezed state, we have 〈δ2X̂in〉 = e−2s and 〈δ2Ŷin〉 = e2s.
Our fidelity expressed with variances, as seen in equations
(7)–(9), is also consistent with the previous theoretical
results of the squeezing parameters in the continuous-variable
quantum teleportation [15–18].

In real experimental situations, the two-mode squeezed-
vacuum state might be influenced by the noise of its

thermal environment, which is not included in equation (14).
Therefore, we need to consider the influence of the thermal
noise on the fidelity of the quantum teleportation. There
are two kinds of noise in the continuous variable quantum
teleportation: phase damping and amplitude damping. Here
we will consider the phase-damping and amplitude-damping
models separately.

First, we will consider the phase-damping model.
Assuming that the thermal environment gives the same effect
on each mode of the two-mode squeezed-vacuum state, the
evolution of the system’s density operator in the interaction
picture is described by the master equation [22]:

dρ

dt
= �

2
(L1 + L2) ρ, (15)

where � is the overall damping rate and

Liρ = 2â+
i âiρâ+

i âi − (â+
i âi)

2ρ − ρ(â+
i âi)

2. (16)

The density operator of the initial
two-mode squeezed-vacuum state is ρ =

1
cosh2 r

∑∞
n1,n2=0 (tanh r)n1+n2 |n1, n1〉 〈n2, n2| in the Fock

state basis [23]. The solution of equation (15) is calculated as

ρ(t) = 1

cosh2 r

∞∑
n1,n2=0

(tanh r)n1+n2

× exp
(−�t |n1 − n2|2

) |n1, n1〉〈n2, n2|. (17)

Consequently, the covariance matrix of ρ(t) is obtained
as

C(X̂1, Ŷ1, X̂2, Ŷ2)

= 1

2

⎛
⎜⎜⎝

cosh 2r 0 e−�t sinh 2r 0
0 cosh 2r 0 −e−�t sinh 2r

e−�t sinh 2r 0 cosh 2r 0
0 −e−�t sinh 2r 0 cosh 2r

⎞
⎟⎟⎠ .

(18)

From equation (18), the variances of the operators X̂1 −
X̂2, Ŷ1 + Ŷ2 are easily found to be

〈δ2(X̂1 − X̂2)〉 = e2r

2 (1 − T ) + e−2r

2 (1 + T ), and
〈δ2(Ŷ1 + Ŷ2)〉 = e2r

2 (1 − T ) + e−2r

2 (1 + T ),
(19)

respectively, where T = exp(−�t) is the transmission
coefficient of the noisy quantum channel. The output state
variances of the quantum teleportation now become

〈δ2X̂out〉 = 〈δ2X̂in〉 + e2r(1 − T ) + e−2r(1 + T ),

〈δ2Ŷout〉 = 〈δ2Ŷin〉 + e2r(1 − T ) + e−2r(1 + T ),
(20)

By substituting equation (20) for equation (9), we obtain
the fidelity

F1 =
1√(

1 + e2r (1−T )+e−2r (1+T )

2〈δ2X̂in〉

) (
1 + [e2r (1−T )+e−2r (1+T )]〈δ2X̂in〉

2

) .

(21)

3
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Figure 1. Schematic setup of the continuous-variable quantum
teleportation, which consists of a source of a two-mode
squeezed-vacuum state, a BS, two BHD, along with amplitude
modulation and phase modulation.

c

b

a

Figure 2. The influence of the phase-damping model on the fidelity
for different EPR correlation parameters r of the noisy quantum
channel. The input state with the squeezing variance 〈δ2X̂in〉 = 0.03.
The lines a, b and c are corresponding to the different quantum
channel transmission coefficients T = 0.99, 0.999 and 1,
respectively.

It can be found from equation (21) that, if we have
a perfect EPR (e−2r = 0 and T = 1), for any input
state, we always have a perfect quantum teleportation with
unit fidelity. We plot the fidelity, equation (21), versus r
in figure 2 with the input state of the squeezing variance
〈δ2X̂in〉 = 0.03. Lines a, b and c correspond to the different
quantum channel transmission coefficients T = 0.99, 0.999
and 1 (different losses), respectively. For the same input
state, the smaller the transmission coefficient T, the worse
the fidelity will be. The fidelity decreases to a fixed value,

F1 =
[√(

1 + 1
〈δ2X̂in〉

) (
1 + 〈δ2X̂in〉

)]−1

, when the correlation

parameter r decreases to 0. Furthermore, the fidelity decreases
to 0.5 when the correlation parameter r decreases to 0 and the
input state is the coherent state. This is the classical fidelity
limit of coherent state quantum teleportation. The fidelity has
a maximum value when e2r(1 − T ) = e−2r(1 + T ). Then the
fidelity decreases exponentially as the correlation parameter
r increases and T �= 1, since the anti-squeezed noise, e2r, is
induced in the quantum channel, which means that the two-

mode squeezed-vacuum state is quickly destroyed in the phase-
damping model.

We can obtain an inequation from equation (21) as

F1 � 1√(
1 +

√
1−T 2

〈δ2X̂in〉

)
(1 + √

1 − T 2〈δ2X̂in〉)
. (22)

Equation (22) is an upper limit of fidelity, which only
depends on the T and variances of the input state. Note that the
upper limit of fidelity has nothing to do with the correlation
parameter r of the two-mode squeezed-vacuum state. It is
shown that the smaller the squeezing variances of the input
state 〈δ2X̂in〉, the worse the fidelity with the same transmission
coefficient T.

Next, we will consider the amplitude-damping model. The
master equation for the density matrix is the same as equation
(15), but

Liρ = (n̄ + 1)(2âiρâ+
i − â+

i âiρ − ρâ+
i âi)

+n̄(2â+
i ρâi − âiâ

+
i ρ − ρâiâ

+
i ), (23)

where n̄ is the average photon number of the thermal
environment [23]. We can also calculate the covariance matrix
of ρ(t) as

C(X̂1, Ŷ1, X̂2, Ŷ2)

= e−�t

2

⎛
⎜⎜⎝

cosh 2r 0 sinh 2r 0
0 cosh 2r 0 − sinh 2r

sinh 2r 0 cosh 2r 0
0 − sinh 2r 0 cosh 2r

⎞
⎟⎟⎠

+(1 − e−�t )

⎛
⎜⎜⎝

n̄ + 1
2 0 0 0

0 n̄ + 1
2 0 0

0 0 n̄ + 1
2 0

0 0 0 n̄ + 1
2

⎞
⎟⎟⎠ . (24)

From the covariance matrix in equation (24), the variances
of the operators X̂1 − X̂2, Ŷ1 + Ŷ2 are found to be

〈δ2(X̂1 − X̂2)〉 = (1 + 2n̄)(1 − T ) + T e−2r,

〈δ2(Ŷ1 + Ŷ2)〉 = (1 + 2n̄)(1 − T ) + T e−2r.
(25)

In experimental situations, the thermal environment is
considered as the vacuum state [6, 7, 9, 10], which means
n̄ = 0; therefore, the parameter e−2r which appeared in
equation (13) is replaced with 1 − T (1 − e−2r) [24, 25], so the
output state variances now become

〈δ2X̂out〉 = 〈δ2X̂in〉 + 2
[
1 − T

(
1 − e−2r

)]
,

〈δ2Ŷout〉 = 〈δ2Ŷin〉 + 2
[
1 − T

(
1 − e−2r

)]
,

(26)

where the quantities 〈δ2X̂out〉(〈δ2Ŷout〉) are experimentally
measurable. The second term includes the extra noise from
the imperfect transport, detecting and so on.

By substituting equation (26) for equation (9), the fidelity
is obtained as

F =
1√(

1 + 1−T [1−exp(−2r)]
〈δ2X̂in〉

)
[1 + 〈δ2X̂in〉[1 − T (1 − exp(−2r))]]

.

(27)

4



J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 115501 H Zhang et al

c

b

a

Figure 3. The influence of the amplitude-damping model on the
fidelity, where r is the EPR correlation parameter and T is the
transmission coefficient of the noisy quantum channel. The lines a,
b and c correspond to the squeezing variance of the input state
〈δ2X̂in〉 = 0.01, 0.02 and 0.06, respectively.

It can be found from equation (27) that, if we have a
perfect EPR (exp(−2r) = 0 and T = 1), for any input state,
we always have a perfect quantum teleportation whose fidelity
is 1. Therefore, we plot the fidelity, equation (27), versus T in
figure 3 with the EPR quantum channel of exp(−2r) = 0.02.
Lines a, b and c correspond to the squeezing variances of the
input state 〈δ2X̂in〉 = 0.01, 0.02 and 0.06, respectively. For the
same quantum channel, the smaller the squeezing variances of
the input state 〈δ2X̂in〉, the worse the fidelity will be. To perform
the quantum teleportation with high fidelity, the ‘noise’ of each
mode of the quantum channel needs to be large enough (which
means strong entanglement) to ‘hide’ the quantum fluctuations
of the input state. For the transmission coefficient T = 0, it
means that the entanglement state is lost completely, and it is
a complete classical teleportation, where the fidelity is never
larger than 0.5. When 〈δ2X̂in〉 < 1, the fidelity is always
below 0.5. The fidelity will be very sensitive to the losses
(T = exp(−�t)), if the transmission coefficient T approaches
to 1.

Comparing equations (20) and (26) in the two damping
models with the same input state and the same transmission
coefficient T in the noisy quantum channel, we find that the
variances of the output state in the phase-damping model
are always larger than the variances of the output state in
the amplitude-damping model. This means the fidelity in the
phase-damping model is always smaller than the fidelity in
the amplitude-damping model when T is the same for both
(T = exp(−�t), same �).

In classical teleportation, the entanglement state between
Alice and Bob is replaced by a vacuum state. So we obtain
the fidelity limit of the classical teleportation for the squeezed
state input from equation (8):

F = 1√
2 + e2s + e−2s

. (28)

For any classical teleportation, the fidelity for the
squeezed input state is always smaller than 0.5. When the
squeezing parameter of the input state is s = 0 (i.e. coherent
state), we obtain the classical fidelity limit of 0.5 for the

coherent state. The classical fidelity limit of the squeezed
state decreases exponentially as the squeezing parameter s
increases, which is due to the fragile nature of squeezing.

In conclusion, we have presented a general expression of
the fidelity for any Gaussian input state teleportation directly
related to the experimental measurable variances of the output
and the input state. Our result shows that this expression
can accurately quantify the quantum teleportation for both
the coherent and the squeezed input states. Furthermore,
the fidelity was discussed when the quantum channel lies
in the phase- and amplitude-noisy environment, which is
unavoidable in experiment, and it was showed that the effect
of the noisy phase on teleportation is more sensitive than
that of the noisy amplitude, so in experiment, the faithful
teleportation must prevent the environment from the phase
damping. The classical fidelity limit of the squeezed state is
also obtained when the entanglement state does not exist in
quantum teleportation.
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