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We propose a generation system of continuous-variable (CV) three-color entangled state of bright optical beams
based on two cascaded standard nondegenerate optical parametric oscillators (NOPOs) above the threshold. One
of signal and idler beams produced by the first NOPO is used for the pump light of the second NOPO. The
three-color entanglement among signal and idler beams produced by the second NOPO and the retained another
beam of the first NOPO is theoretically demonstrated. The symplectic eigenvalues of the partial transposition
covariance matrix of the generated optical entangled state are numerically calculated in terms of experimentally
reachable system parameters. The optimal operation conditions of the cascaded NOPOs system for obtaining
high entanglement are found. The calculated results explicitly demonstrate that the OPO action can transfer
entanglement. Due to that the cavity parameters and the nonlinear crystals of the two NOPOs can be freely
chosen, the flexibility of the proposed protocol is relatively good and the system can be also extended to prepare
entangled states with more parts easily.
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I. INTRODUCTION

A variety of physical systems are currently under investiga-
tion to perform the envisioned information tasks, e.g., storage,
computation, and communications [1]. These systems, such as
atom clouds [2], quantum dots [3], and trapped ions [4], all
with different resonance frequencies, will probably be used
in nodes of quantum networks. To establish entanglement
and transfer quantum information among different nodes in a
quantum network, we, first, have to prepare multicolor optical
entangled states with required different frequencies [5].

In the achieved most experiments, the entangled optical
beams are generated by combining squeezed states of light on
optical beam splitters [6–9]. As is well known, a beam splitter
only implements the linear optical transformation and does not
lead to entanglement of optical field with different frequencies.
In order to produce multicolor entangled beams, it is important
to explore efficient and feasible nonlinear optical systems.

Although the bipartite entanglement between signal and
idler output optical fields from a nondegenerate optical para-
metric oscillator (NOPO) has been experimentally observed
by several groups [10–14], the observation of three-color
entanglement is much harder. Recent years, some generation
schemes of continuous-variable (CV) multiply entangled
beams with different frequencies via intracavity nonlinear
optical processes have been proposed [15–21]. Especially, the
genuine three-color pump-signal-idler entanglement produced
directly from a standard single NOPO above the threshold was
theoretically demonstrated in 2006 [15] and experimentally
realized at a low temperature of −23 ◦C in 2009 [16].

Based on the existence of the tripartite entanglement among
the three optical fields produced by an optical parametric
oscillator (OPO) operating above threshold, a scheme to
generate CV multicolor entangled state using various OPOs
in a chain configuration has been proposed in 2008 [22]. In
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the scheme proposed by Cassemiro and Villar, the pump field
reflected by the first OPO is used for the pump mode of the
second OPO. Since the reflected pump mode is entangled with
the signal and the idler modes produced by the first OPO
through the frequency down-conversion, the signal and the
idler modes generated by the second OPO are also entangled
with that produced by the first OPO. A pair of the signal
and the idler modes is usually named as a twin beam. In
this case, the reflected pump field serves as an entanglement
distributor between two OPOs. It has been pointed out in
Ref. [22] that “the spurious losses in the pump mode have
the main consequence of decreasing the available power for
pumping the second OPO.” In 2010, the entangled state of
photon triplets was experimentally produced by cascaded
spontaneous parametric down-conversion (C-SPDC), in which
each of the triplet photons originated from a single pump
photon and, thus, they were quantum correlated [23]. Since
the generation process of the triplet-entangled photons in this
experiment did not involve usually postselecting [24–27] and
heralding [28–30] technology, it was suitable to be used for
linear optical quantum computing [31]. The wavelengths of the
generated triplet photons in the experiment were 848, 1590,
and 1510 nm, respectively, two of which were matched for
optimal transmission in optical fibers and, thus, were suitable
for three-party quantum communication [32].

Combining the mature generation technology of CV two-
partite entanglement using NOPO [10–13] and the idea of
transferring quantum correlations among different parts of the
spectrum of light [22,33–36], we transfer the above-mentioned
scheme producing photon triplets to prepare CV three-color
entanglement of optical field. In this paper we propose a
generation system of CV three-color entangled optical beams,
in which two cascaded NOPOs (NOPO1 and NOPO2) are
utilized. One of the entangled signal and idler beams output
from NOPO1 is used for the pump light of NOPO2. The
well phase-matching among the pump, signal, and idler fields
in each NOPO results in the quantum correlations of the
amplitude and phase quadratures between output signal and
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idler beams. Because the output signal and idler optical fields
from NOPO2 and the retained another beam produced by
NOPO1 derive from an original pump field of NOPO1, the
CV quantum correlations should exist among the three fields.
Based on solving the Langevin equations for the evolution of
the field fluctuations inside NOPO1 and NOPO2 [37,38] and
applying the necessary and sufficient entanglement criterion
for Gaussian states based on the positivity under partial
transposition (PPT) proposed by Simon and Werner et al.
[39,40], we theoretically demonstrate that the determinate
CV quantum entanglement exists among the three optical
modes with different wavelengths produced by the cascaded
NOPOs. Since one of the output beams from NOPO1 is
used for the pump field of NOPO2, its quantum fluctuations
and its quantum correlations with another output beam from
NOPO1 will directly be coupled into the signal and the
idler modes of NOPO2 through an intracavity nonlinear
interaction. Therefore, in the calculation the pump field of
NOPO2 cannot be regarded as a coherent state of light as
usual but an asymmetric thermal state depending on the
squeezing parameter of NOPO1. The generation of the three-
color entanglement closely relates to two nonlinear processes
happened in both NOPO1 and NOPO2; therefore, the optimal
operation conditions and the cavity parameters of the cascaded
system have to be comprehensively considered. We search
the optimal pump parameters and the transmissivities of the
output coupler for the two NOPOs through the numerical
calculation to make the smallest symplectic eigenvalues of the
partial transposition covariance matrix of the generated three
optical fields reaching the minimum first. Then around these
optimal values, the dependences of the smallest symplectic
eigenvalues of the partial transposition covariance matrix
on the system parameters of the two NOPOs are analyzed.
All values of the system parameters used in the calculation
are taken within the experimentally reachable regions. The
calculated results verify the existence of the expected CV
three-color entanglement under some reachable conditions.
The calculated results explicitly demonstrate that the OPO
action can transfer entanglement and we model a typical
experimental setup which provides a direct reference for
the design of experimental systems. Due to that the cavity
parameters and the nonlinear crystals of the two NOPOs
can be freely chosen, the system has better flexibility on
the choices for physical parameters and wavelengths of
the three entangled modes. On the other hand, since OPO
is a well-known tunable optical device the two cascaded
NOPOs can provide large frequency choosing range which
is very necessary for the application in quantum information
networks.

The paper is organized as follows. In the second section, the
physical system of the cascaded NOPOs is briefly described
and the fundamental formulas of the field fluctuation evolution
are deduced based on Langevin equation for standard NOPOs.
Then the fluctuations of amplitude and phase quadratures of
the output signal and idler fields are calculated by using the
boundary conditions of NOPOs. Utilizing the PPT criterion for
the inseparability of optical fields [39,40], the entanglement
characteristics of the three-color entangled optical beams are
numerically analyzed in Sec. III. The influences of the excess
phase noise due to thermal fluctuations to entanglement are

discussed in Sec. IV. Finally, a brief summary is given in
Sec. V.

II. PHYSICAL SYSTEM AND EVOLUTION FORMULAS
OF FIELDS

The schematic of the physical system is shown in Fig. 1. The
system consists of two cascaded optical parametric oscillators
(NOPOs). Each of NOPOs is composed of the input and output
optical couplers, between which a type II phase-matched
χ (2) nonlinear crystal is placed. The parametric interaction
is enhanced by the feedback of the optical cavity, in which
the three intracavity modes of signal, idler, and pump fields
resonate simultaneously. ain

p1(ain
p2) is the pump field of NOPO1

(NOPO2) and ain
0(1)(a

in
2(3)) is the injected vacuum signal (idler)

fields in two polarization directions of the type II crystal,
respectively. The output signal light aout

0 from NOPO1 is
used for the pump field of NOPO2 (ain

p2 = aout
0 ) and the

idler light aout
1 from NOPO1 is retained. aout

2 and aout
3 stand

for the output signal and idler beams from NOPO2. Due to
the conservation of energy and momentum in the intracavity
frequency down-conversion process and the mode-selecting
effect of the resonant cavity, the frequencies of the pump,
signal, and idler modes (fp1, f0, f1 for ap1, a0, a1 and
fp2, f2, f3 for ap2, a2, a3, respectively) have to satisfy the
relations of fp1 = f0 + f1 and fp2 = f2 + f3.

The amplitude (x̂) and the phase (ŷ) quadrature operators
are defined by the field annihilation operator â, i.e., â =
eiθ (x̂ + iŷ), where θ is an arbitrary phase. Generally, θ is
chosen to make the average value of the imaginary part of â

to be zero, i.e., 〈ŷ〉 = 0. In this case, x̂ and ŷ are associated
with the amplitude and the phase components of an intense
optical field, respectively. In the linearized description of
field with δâ = â − 〈â〉, the field fluctuations are expressed
by the vectors �Xi (i = 1 and 2 for NOPO1 and NOPO2,
respectively) [41].

⇀

X1 = [δxp1,δyp1,δx0,δy0,δx1,δy1]T , (1)
⇀

X2 = [δxp2,δyp2,δx2,δy2,δx3,δy3]T , (2)

where δxp1, δx0, δx1 (δxp2,δx2,δx3) and δyp1, δy0, δy1 (δyp2,
δy2, δy3) are the fluctuations of the amplitude and the phase
quadratures of the intracavity pump âp1 (âp2), signal â0 (â2),
and idler â1 (â3) fields for NOPO1 (NOPO2), respectively.

Using the master equation for the density operator and a
quasiprobability representation of the field, we can replace the
operators with c numbers to obtain a Fokker-Planck equation
[38] and its equivalent description by Langevin equations. Un-
der the linearized approach [37] and perfect phase matching,

FIG. 1. (Color online) The schematic of physical system for
generation of bright three-color entangled state.
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the Langevin equations describing the evolution of the field
fluctuations inside NOPO1 and NOPO2 are given by

τi

∂

∂t
�Xi = MAi

�Xi + Mγi
�Xin

αi + Mμi
�Xin

βi + �Qi,

(3)
(i = 1 for NOPO1, i = 2 for NOPO2),

where τi is the round-trip time of the optical field inside
NOPOi and we can take τ = τ1 = τ2 for all six intracavity
fields. MAi is the drift matrix describing the evolutions of
the field fluctuations in a round trip. The next two terms,

Mγi
�Xin

ai and Mμi
�Xin

βi , couple the input field fluctuations into the
NOPOi through its input coupler (Mγi) and the spurious losses
(Mμi). �Xin

ai and �Xin
βi stand for the fluctuations injected from the

input coupler and the noises produced by the internal loss
mechanism in NOPOi, respectively. �Qi expresses the excess
phase noise coming from the thermal phonons in the nonlinear
crystal.

The drift matrix MAi , including attenuation, parametric
amplification, and phase shift are expressed by MA1 for
NOPO1 and MA2 for NOPO2:

MA1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γ ′
p1 0 −

√
γ ′

p1γ
′
0(σ1−1) 0 −

√
γ ′

p1γ
′
1(σ1 − 1) 0

0 −γ ′
p1 0 −

√
γ ′

p1γ
′
0(σ1 − 1) 0 −

√
γ ′

p1γ
′
1(σ1 − 1)√

γ ′
p1γ

′
0(σ1 − 1) 0 −γ ′

0 0
√

γ ′
0γ

′
1 0

0
√

γ ′
p1γ

′
0(σ1 − 1) 0 −γ ′

0 0 −√
γ ′

0γ
′
1√

γ ′
p1γ

′
1(σ1 − 1) 0

√
γ ′

0γ
′
1 0 −γ ′

1 0

0
√

γ ′
p1γ

′
1(σ1 − 1) 0 −√

γ ′
0γ

′
1 0 −γ ′

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

MA2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γ ′
p2 0 −

√
γ ′

p2γ
′
2(σ2−1) 0 −

√
γ ′

p2γ
′
3(σ2 − 1) 0

0 −γ ′
p2 0 −

√
γ ′

p2γ
′
2(σ2 − 1) 0 −

√
γ ′

p2γ
′
3(σ2 − 1)√

γ ′
p2γ

′
2(σ2 − 1) 0 −γ ′

2 0
√

γ ′
2γ

′
3 0

0
√

γ ′
p2γ

′
2(σ2 − 1) 0 −γ ′

2 0 −√
γ ′

2γ
′
3√

γ ′
p2γ

′
3(σ2 − 1) 0

√
γ ′

2γ
′
3 0 −γ ′

3 0

0
√

γ ′
p2γ

′
3(σ2 − 1) 0 −√

γ ′
2γ

′
3 0 −γ ′

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

where γj and μj (j = p1,0,1 and p2,2,3) are associated with
the transmission loss (γj ) of the output coupler of NOPO and
all other loss mechanisms (μj ), respectively. The subscripts
j = p1,0,1 and p2,2,3 designate the pump, signal, and idler
fields for NOPO1(p1,0,1) and NOPO2(p2,2,3), respectively.
γj depends on the amplitude reflection coefficients rj and the
transmission coefficients tj of the output coupler of NOPO by
rj = 1 − γj , tj = √

2γj . μj relates to the crystal absorption,
surface scattering, imperfection of cavity mirrors of NOPO,
and so on. Combining the two loss parameters together, we
use γ ′

j = γj + μj to denote the total loss coefficient. σ1 and
σ2 are the pump parameters of the NOPO1 and NOPO2,
respectively.

The fluctuation coupling terms Mγi and Mμi are associated
with the diffusion in the Langevin process and are described
by the diagonal matrices [41]:

Mγ 1 = diag[
√

2γp1,
√

2γp1,
√

2γ0,
√

2γ0,
√

2γ1,
√

2γ1],
(6)

Mγ 2 = diag[
√

2γp2,
√

2γp2,
√

2γ2,
√

2γ2,
√

2γ3,
√

2γ3],

Mμ1 = diag[
√

2μp1,
√

2μp1,
√

2μ0,
√

2μ0,
√

2μ1,
√

2μ1],

Mμ2 = diag[
√

2μp2,
√

2μp2,
√

2μ2,
√

2μ2,
√

2μ3,
√

2μ3].

(7)

The excess phase noise coming from the thermal phonons in
the crystal is a stochastic fluctuation and exists in all intracavity
modes. The vector �Qi is expressed by

�Q1 = [0,δQp1,0,δQ0,0,δQ1]T ,
(8)�Q2 = [0,δQp2,0,δQ2,0,δQ3]T .

In the frequency domain, the intracavity fluctuations of the
NOPO1 and NOPO2 are given by Ref. [41]

�Xi(�) = [i�I − MAi]
−1

(
Mγi

�Xin
αi + Mμi

�Xin
βi + �Qi

)
, (9)

where the parameter � is the analysis frequency. Because we
discuss the cascaded nonlinear optical process in two NOPOs,
the analysis frequencies for NOPO1 and NOPO2 are taken to
be the same in the calculation.

013819-3



AIHONG TAN, CHANGDE XIE, AND KUNCHI PENG PHYSICAL REVIEW A 85, 013819 (2012)

Using the boundary condition on the output coupling mirror
[42]

�Xout
i (�) = Mγi

�Xi(�) − �Xin
αi(�), (10)

We obtain the output field of two NOPOs in term of their
input fields,

�Xout
i (�) = Mγi[i�I − MAi]

−1
(
Mγi

�Xin
αi + Mμi

�Xin
βi + �Qi

)
− �Xin

αi(�). (11)

Since aout
0 = ain

p2, δx in
p2, and δy in

p2 in �Xin
α2(�) can be replaced

by δxout
0 and δyout

0 in �Xout
1 (�), such that the three designated

outputs of the system, δxout
1 , δyout

1 , δxout
2 , δyout

2 , and δxout
3 ,

δyout
3 are obtained.

III. ENTANGLEMENT CHARACTERISTICS

To verify the quantum entanglement among the obtained
three modes, two types of the inseparability criteria for optical
modes are used usually. The criterion proposed by van Loock
and Furusawa [43] is written directly in terms of the sums of
variances involving the following three fields:

S1 = δ2(x1 − x2) + δ2(y1 + y2 + g3y3) < 4,

S2 = δ2(x1 − x3) + δ2(y1 + g2y2 + y3) < 4, (12)

S3 = δ2(x2 − x3) + δ2(g1y1 + y2 + y3) < 4.

This is a sufficient condition for the quantum entan-
glement among amplitude and phase quadratures of three
optical modes, i.e., if the three inequalities are simulta-
neously satisfied, the three modes are in an inseparable
entangled state. Where gi(i = 1,2,3) are the gain factors
(arbitrary real parameters), which are chosen to minimize
the combined correlation variances at the left side of the
inequalities.

Another criterion based on PPT [39,40] is the sufficient
and necessary condition for CV entanglement of Gaussian
optical modes. For Gaussian states, the complete information
is available from the mean values (first-order moments)
and the covariance matrix (second-order moments). As is
well known, the second-order moments are relevant for
entanglement properties and, thus, the necessary and sufficient
entanglement criterion for Gaussian states can be obtained
from the covariance matrix, i.e., the PPT criterion [39,40]. If
one party is separable from the rest of a multipartite quantum
system, the full density matrix remains positive under the
partial transposition with respect to that party. The partial
transposition for Gaussian state is equivalent to invert the sign
of a quadrature of a submode in the state [39]. The state is
separable if and only if all the symplectic eigenvalues are
greater than or equal to 1. This criterion is necessary and
sufficient for all 1 × N decompositions of Gaussian state [40],
where N + 1 is the total number of entangled modes. In the
tripartite scenario, the three possible 1 × 2 partitions have to
be tested.

The covariance matrix of the system is calculated as
V = 〈�xT �x〉, with �x = [δxout

1 ,δyout
1 ,δxout

2 ,δyout
2 ,δxout

3 ,δyout
3 ]. For

simplicity and without losing generality, we assume that the
losses and transmission factors are the same for signal and idler

modes inside NOPO, i.e., μ0 = μ1 and γ0 = γ1 for NOPO1
and μ2 = μ3, γ2 = γ3 for NOPO2.

The partial transposition operation may be applied to either
aout

1 , which results in the partially transposed (PT) covariance
matrix Ṽ (1), or to one of the twin beams, aout

2 and aout
3 , which

yields Ṽ (2) and Ṽ (3). The failure of the resultant PT covariance
matrix Ṽ (i)(i = 1,2,3) on complying with the uncertainty
principle, i.e., Ṽ (i) + i � 0, is a sufficient condition for the
existence of entanglement between the transposed subset and
the remaining subsets [40]. Thus, we can use the smallest
symplectic eigenvalue of each PT matrix υ̃(i) for Ṽ (i) to witness
entanglement, i.e., when υ̃(i) < 1 the state is entangled. The
symplectic eigenvalues can be computed by diagonalizing the
matrix Ṽ , whose eigenvalues turn out to be {∓iυj } for
j = 1, . . . ,n.

Apart from intracavity losses and excess phase noise,
which degrade the level of entanglement, there are six
system parameters [transmission factors of signal (idler) and
pump fields, pump parameters for the two NOPOs], which
should be considered comprehensively to achieve the optimal
entanglement. We employ in the numerical calculation the
analysis frequency � = 0.01 and the experimentally reachable
system parameters. When γ1 = 0.03, γp1 = 0.20, γ2 = 0.10,
γp2 = 0.20, σ1 ∼ 1, σ2 ∼ 2.02, the smallest symplectic eigen-
value of Ṽ (1) arrives the minimum value υ̃(1) ∼ 0.12. And
when γ1 = 0.03, γp1 = 0.20, γ2 = 0.10, γp2 = 0.20, σ1 ∼ 1,
σ2 ∼ 1, the smallest symplectic eigenvalue of Ṽ (2) and Ṽ (3)

tends to zero [υ̃(2)(υ̃(3)) ∼ 0]. Due to the interchangeability
of signal and idler modes, we have υ̃(2) = υ̃(3). The results
show that the optimal squeezing condition for NOPO1 is
near the threshold (σ ∼ 1), which is the same with that for
a standard NOPO to achieve the best quantum correlations
between output signal and idler modes [37]. The functions of
υ̃(1) and υ̃(2)(υ̃(3)) versus σ2 are shown in Fig. 2. We can see
that when υ̃(1) reaches to the minimum at σ2 = 2.02, υ̃(2)(υ̃(3))
is not at the minimum. However, υ̃(2)(υ̃(3)) is always smaller
than υ̃(1) for any value of σ2. To make the balance of υ̃(1) and
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FIG. 2. (Color online) The smallest symplectic eigenvalues υ̃ (1)

and υ̃ (2)(υ̃ (3)) versus the pump parameter of NOPO2 (σ2) with σ1 = 1,
γ ′

1 = 0.03, γ ′
2 = 0.10, γ ′

p1 = 0.20, γ ′
p2 = 0.20, � = 0.01 [without

considering the intracavity losses (μ = 0) and excess phase noise
coming from the phonons (VQ = 0) in the crystal].
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FIG. 3. (Color online) The smallest symplectic eigenvalues υ̃ (1)

and υ̃ (2)(υ̃ (3)) versus the pump parameter of NOPO1 (σ1) with σ2 =
2.02, γ ′

1 = 0.03, γ ′
2 = 0.10, γ ′

p1 = 0.20, γ ′
p2 = 0.20, � = 0.01, μ =

0, VQ = 0.

υ̃(2)(υ̃(3)) to a large extent, we take σ2 = 2.02 in the following
calculations.

Figure 3 shows the functions of υ̃(1) and υ̃(2)(υ̃(3)) versus the
pump parameter σ1 of NOPO1 under σ2 = 2.02 and without
considering the intracavity losses (μ = 0) and the excess phase
noise (VQ = 0) in the crystal. As that expected for a standard
NOPO [37], all υ̃(1∼3) tend to the minimum at the pump
threshold of NOPO1 (σ1 = 1).

The dependences of υ̃(1) and υ̃(2)(υ̃(3)) on the transmissions
of the signal (idler) mode for NOPO1 (γ1 = γ0) and NOPO2
(γ2 = γ3) are drawn in Figs. 4(a) and 4(b), respectively,
where σ1 = 1, σ2 = 2.02, μ = 0, VQ = 0 are assumed. The
figures show that in a large range of γ1 (0.01 ∼ 0.10) and
γ2(0.02 ∼ 0.15), the criterion for the entanglement are satisfied,
i.e., υ̃(1) < 1 and υ̃(2)(υ̃(3)) < 1.

Now we consider the effect of the intracavity losses.
Figure 5 shows the functions of υ̃(1) and υ̃(2)(υ̃(3)) versus
μ1 and μ2, respectively, where we have taken μp1 = μp2 =
0.01 and VQ = 0. The values of υ̃(1) and υ̃(2)(υ̃(3)) for μ1 = 0
are always smaller than that for μ2 = 0, which means that the
influence of the intracavity losses of NOPO1 is stronger than
that of NOPO2.

From Figs. 2 to 5, we can see that the values of υ̃(2)(υ̃(3))
are totally smaller than that of υ̃(1).

IV. THE EFFECT OF EXTRA PHASE NOISE

It has been pointed out by Cesar et al. that there is an
additional phase noise source in NOPO above the threshold,
which results from the refractive index fluctuation associated
with acoustic phonons inside the nonlinear crystal [41].
According to the theoretical model in Ref. [41], we ana-
lyze the influence of the extra phase noise from thermal
fluctuations in the crystal on the three-color entanglement.
The extra phase noise depends on the covariance matrix for
the additional phase fluctuations, VQ(�) = �Q(�) �QT (−�), in
which the covariance terms of the extra noise are given by
〈δQj (�)δQk(−�)〉 = ηjk

√
PjP k , ηjk is the noise coupling
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FIG. 4. (Color online) The smallest symplectic eigenvalues υ̃ (1)

and υ̃ (2)(υ̃ (3)) versus the transmission coefficient of the signal and
idle field of the two NOPO with σ1 = 1, σ2 = 2.02, γ ′

p1 = 0.20,
γ ′

p2 = 0.20, � = 0.01, μ = 0, VQ = 0.

term which depends on the wavelength and the ratio of the
crystal length with the effective Rayleigh length of the optical
cavity. The extra phase noise is proportional to the square
root of the intracavity powers of the optical modes,

√
Pj

and
√

Pk . Based on the analyses in Ref. [41], we assume
η11 = η22 = η00/4, η01 = η02 = 0.27η00, and η12 = 0.16η00.
The value of η00 depends on the experiment condition.

The power of the signal, idler, and pump fields for NOPO1
and NOPO2 can be calculated with the Langevin equation [37].
We have

|ᾱp1|2 = γ ′
0γ

′
1

4χ2
1

, |ᾱp2|2 = γ ′
2γ

′
3

4χ2
2

(13a)

γ ′
0|ᾱ0|2 = γ ′

1|ᾱ1|2 = γ ′
p1γ

′
0γ

′
1

4χ2
1

(
2

√
2γp1χ

2
1

γ ′
0γ

′
1γ

′2
p1

ᾱin
p1 − 1

)

= γ ′
p1γ

′
0γ

′
1

4χ2
1

(σ1 − 1), (13b)
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FIG. 5. (Color online) The smallest symplectic eigenvalues υ̃ (1)

and υ̃ (2)(υ̃ (3)) versus the intracavity losses of the signal and idle field
(μ1 and μ2) with σ1 = 1, σ2 = 2.02, γ ′

1 = 0.03, γ ′
2 = 0.10, γ ′

p1 =
0.20, γ ′

p2 = 0.20, � = 0.01, μp1 = μp2 = 0.01, VQ = 0.

γ ′
2|ᾱ2|2 = γ ′

3|ᾱ3|2 = γ ′
p2γ

′
2γ

′
3

4χ2
2

(
2

√
2γp2χ

2
2

γ ′
2γ

′
3γ

′2
p2

ᾱin
p2 − 1

)

= γ ′
p2γ

′
2γ

′
3

4χ2
2

(σ2 − 1), (13c)

where χ1 and χ2 are the second-order nonlinear coefficients
of the type II nonlinear crystals in the NOPO1 and NOPO2,
respectively.

If the output power of the signal (idler) field from
NOPO1 (assuming that the power of the signal and the
idler field is the same) and the oscillation threshold of
NOPO2 are given, we can calculate the intracavity powers
of signal, idler, and pump fields in NOPO1 and NOPO2
from Eq. (13) and the input-output formulas of NOPO,
respectively. Of course, the given output power of the signal
field from NOPO1 should be higher than the threshold
pump power of NOPO2, otherwise the system cannot be
operated.

As an example, we take the really experimental parameters
described in Ref. [11] to be that of NOPO1, i.e., γ1 = 0.016,
μ1 = 0.003, γ ′

p1 = 0.09, and σ1 = 1.9, where the obtained
output power of the signal field is 11 mW (22 mW/2). We
assume that it is higher than the threshold of NOPO2. The
calculated intracavity powers of the signal and pump fields for
NOPO1 are about 345 and 73 mW, respectively. η00 is taken
as 0.68 × 10−2 W−1 which is the value deduced in Ref. [41]
according to the experimental result of Ref. [11].

For reducing the threshold, we choose a periodically
poled lithium niobate (PPLN) crystal to be the nonlinear
material in NOPO2. For this type of NOPO, the threshold of
1 mW at 1.064 μm pump wavelength has been realized [44].
From Ref. [41], we take η00 = 0.24 W−1 [41] for NOPO2.
If the threshold of NOPO2 (P2) is 5 mW, the calculated

intracavity powers of the signal (idler) and the pump fields are
about

|α2|2 = |α3|2 = 2P2γp2

γ ′
p2γ

′
2

(σ2 − 1) ∼ 97 mW, (14)

|αp2|2 = γ ′
2|α2|2

γ ′
p2(σ2 − 1)

∼ 47 mW. (15)

where P2 = 5 mW, γp2 = 0.19, γ ′
p2 = 0.20, γ ′

2 = 0.10, and
σ2 = 2.02.

After considering the effect of the excess phase noise
coming from the phonons in the crystal, the calculated υ̃(1)

and υ̃(2)(υ̃(3)) are about 0.56 and 0.18, respectively, both of
which are smaller than 1, i.e., the obtained three modes are in
a fully inseparable entangled state.

V. CONCLUSION

We design a generation system of CV three-color entangled
state in which two cascaded NOPOs are used. The triplet-
photon entanglement at the wavelengths around the optical
fiber communication window (∼1.5 μm) and the atomic
transition (∼0.8 μm) has been experimentally achieved [23].
Using the presented design and the nonlinear crystals utilized
in Ref. [23], the CV three-color entanglement of optical
field at these wavelengths can be realized. Based on the
PPT criterion for the inseparability of three optical modes,
the dependences of the symplectic eigenvalues of the partial
transposition covariance matrix on the system parameters are
calculated. In the calculation, we comprehensively consider
the interconnection among the physical parameters of the
two NOPOs and find the optimal operation conditions for
obtaining better three-color entanglement. Finally, an example
associated with the realized experiment shows that the system
is able to produce the three- color entangled optical beams.
The presented system can be extended to prepare the entangled
states with more than three parties if the reflected pump fields
are involved or more NOPOs are cascaded. For example, if the
two reflected pump fields from the NOPO1 and NOPO2 are
involved, as that demonstrated in Refs. [16,22], the entangle-
ment may be generated among five beams with very different
frequencies under a suitable condition. In the presented paper,
only the optimal conditions for the entanglement of the
three transmitted field are considered. For the generation of
the entanglement with more submodes the more complex
numerical calculations based on the covariance matrix are
required. The proposed protocol extends the concept presented
in Ref. [16] for the tripartite entanglement generation from
a single NOPO to the system of the cascaded NOPOs.
Recently, two cascaded OPOs operating below the threshold
have been successfully used for the manipulation of a squeezed
vacuum and a two-mode entangled state [45,46]. The chaining
technique of two OPOs applied in Refs. [45] and [46] can be
easily transferred into the proposed protocol. We believe that
by combining our proposal and schemes in Refs. [16,22], the
multipartite entangled optical states more than three colors can
be experimentally achieved.
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