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Abstract In the coherently trapped populations of a
four-level atom, we demonstrated the quantum beats
with different mechanism, which originate from the
interference between transition channels with different
dipole moments. The beat frequency is determined
by the intrinsic atomic parameters, i.e., the spacing of
upper levels and ratio of dipole moments. The resonant
plasmonic nanoantenna, as a candidate for the creation
of anisotropic vacuum, was proposed to achieve the
nanoscale realization of the quantum beats, sponta-
neous emission cancellation, and Rabi oscillation in
two-photon correlations through the enhanced near-
field and modified decay rates.
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Introduction

Quantum interferences (QIs) in multilevel atomic sys-
tems are generally concerned with extrinsic atomic
parameters. Spectral line cancellation of spontaneous
emission is induced by the coherent trapping of pop-
ulations of upper closing levels [1, 2]. By adjusting
the phase and pulse envelope of the pumping field,
a continuous transition from narrowing to elimination
in fluorescence spectra is reported [3–5]. QI can also
be induced by an anisotropic vacuum [6]. In photonic
band gap structures, interference between transition
channels leads to the population oscillations of two
upper levels [7, 8]. Through light focusing and phase
compensation in a left-handed material, QI between
two orthogonal dipoles is realized [9]. The anisotropy
of the electric modal density coming from the collective
oscillations of free electrons in metals enhances the QI
effects [10]. In this work, instead of the interferences
induced by the extrinsic atomic parameters, we propose
the interference with a totally different mechanism, i.e.,
quantum beats of population oscillations, determined
by the intrinsic atomic parameters.

By squeezing light into nanoscale volumes, pho-
tonic structures with evanescent fields in nanore-
gions, especially plasmonic elements [11–16], allow for
the nanoscale realization of light matter interactions
that are not accessible through traditional techniques.
Through modifying the population of excited states and
decay rate of quantum emitters near plasmon struc-
ture, the emission spectra of fluorescent molecules and
semiconductor quantum dots can be controlled [17].
Through the nanoscale coupling between the surface
plasmons of a silver nanowire and a single quantum
emitter, the directional emission and high-efficiency

Author's personal copy



34 Plasmonics (2012) 7:33–38

generation of single photons can be achieved [12].
Using localized plasmon coupling, selective enhance-
ment of surface-state emission in CdS nanocrystals was
proposed [13]. Through the near-field enhancement
and decay rate modification in plasmonic structures,
nanoscale control of the Mollow triplet of the molecular
fluorescence spectrum and antibunching of emission
photons is demonstrated [14, 15]. Using the evanescent
fields of tapered optical fibers, sharply peaked two-
photon absorption in rubidium vapor was observed at
low power levels [16]. Here, the nanoscale realization of
the proposed quantum phenomenon was demonstrated
through a resonant plasmonic nanoantenna.

We first set the trapping condition allowing the
populations to coherently stay in the closing upper
levels of four-level atom. For this case, we found the
transient quantum beats in the population oscillations
originating from interference between transition chan-
nels with different dipole moments in the isotropic and
anisotropic vacuum. Unlike the QIs induced by extrin-
sic parameters [1–10], beat frequencies are determined
by the intrinsic atomic parameters, i.e., the spacing of
two upper levels and ratio of the two dipole moments.
These parameters can be monitored via changes in Rabi
frequency in spontaneous emission spectra and two
photon correlations; therefore, the system may have
potential applications in the measurement of dipole
moments [18]. Next, a resonant plasmonic nanoantenna
[19], which can induce an anisotropic vacuum, was used
to achieve the nanoscale realization of quantum beats,
spontaneous emission cancellation, and Rabi oscilla-
tion in two photon correlations through the enhanced
near-field and modified decay rates.

Quantum Beats of Atomic Populations
in Isotropic Vacuum

Consider the four-level atom with two closing upper
states |a1〉 and |a2〉 and two ground states |b〉 and |c〉,
which is shown in the inset of Fig. 1. The transitions
|a1〉 ↔ |b〉 and |a2〉 ↔ |b〉 are coherently driven by a
pump field with frequency ν, Rabi frequencies �1 and
�2, and the detunings �1 = ωa1 − ν and �2 = ωa2 − ν

where ωa1 −ωa2 =ω12, respectively. Spontaneous emis-
sion from |a1〉 and |a2〉 to |c〉 are coupled via the kth
isotropic or anisotropic vacuum mode which has fre-
quency ωk and coupling constants g(1,2)

k . If the initial
vector state is |ψ(0)〉={A1(0)|a1〉+ A2(0)|a2〉+B(0)|b〉}
|0〉, in the dipole, rotating-wave, and Wigner–Weisskopf
approximations, the state vector |ψ(t)〉 = {A1(t)|a1〉 +
A2(t)|a2〉 + B(t)|b〉}|0〉 + ∑

k Ck(t)b+
k |0〉|c〉, which obey

Fig. 1 Quantum beats in the population oscillations in the
isotropic vacuum with the parameters γ20 = 1.0 and θ = 0.0. The
insets are schematics of the four-level system and dipole moments

the Schrodinger equation, can be written as: [1, 2,
10, 20]

d
dt

A1(t) = −γ1

2
A1(t) − κ12

2
A2(t)eiω12t + �1ei�1t B(t),

(1a)

d
dt

A2(t) = −γ2

2
A2(t) − κ21

2
A1(t)e−iω12t + �2ei�2t B(t),

(1b)

d
dt

B(t) = −�∗
1e−i�1t A1(t) − �∗

2e−i�2t A2(t), (1c)

d
dt

Ck(t) = −g(1)

k A1(t)e−i(ωa1c−ωk)t − g(2)

k A2(t)e−i(ωa2c−ωk)t,

(2)

where γ1 and γ2 are the decay rates from the upper two
levels to lower level and κ12 and κ21 are the crossing
damping terms between |a1〉 and |a2〉. For the closing
states |a1〉 and |a2〉, we have κ12 = κ21 = κ . In an
anisotropic vacuum, if y-axis is quantum axis, the
values of γ1,2 and κ are γ1,2 = γ(1,2)0(

6πc
ωac

)[ImGxx cos2

θ1,2 + ImGzz sin2 θ1,2] and κ = √
γ10γ20(

6πc
ωac

)[ImGxx
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cos θ1 cos θ2+ ImGzz sin θ1 sin θ2], respectively [14, 15,
21, 22]. In this case, θ1,2 are the intersection angles
between the dipole moments −→μ 1,2 and the x-axis;
Gββ with β = x, y, z is the Green’s tensor; and
γ(1,2)0 = μ2

(1,2)ω
3
ac/(3πε0�c3) are the decay rates in an

isotropic vacuum. We will assume that the ratios of
the dipole moments between the two upper levels and
the levels |b〉 and |c〉 are the same. The anisotropic
vacuum can be created by the metamaterial, plasmonic
structure, and layered waveguide, and the quantum
coherences have been widely studied especially for the
orthogonal case −→μ 1.

−→μ 2 = 0 [9, 10, 23].
To ensure that the populations are coherently

trapped in the upper levels, Eq. 1 must have a nonzero
steady-state solution, i.e., λ = 0 [1, 2]. This requires that

γ1|�2|2 + γ2|�1|2 − κ(�1�
∗
2 + �2�

∗
1) = 0, (3a)

�1|�2|2 + �2|�1|2 = 0. (3b)

Therefore, the previous trapping condition in the
isotropic vacuum [1, 2] can extend to the anisotropic
vacuum. After further consideration, we found that
only when θ1 = θ2, i.e., two dipole moments are parallel,
the above trapping conditions are fulfilled. If we put
atoms near the resonant plasmonic structure, the decay

rates γ1,2 and κ , as well as the drive Rabi frequencies
�1,2, can be controlled at the nanoscale [14, 15].

For the trapping condition, the cubic equation, which
is similar to Eq. 7 in [1, 2], is quadratic:

λ2 − λ(�1 + �2) +
[

�1�2 + |�1|2 + |�2|2 − κ2

4

]

= 0,

(4)

where �1,2 = γ1,2/2 + i�1,2. Now we let θ1 = θ2 = θ ,
|−→μ 1|/|−→μ 2| = α and (γ1 + γ2)/2 = γ and define the
effective spacing ωe = 1−α2

1+α2 ω12 and effective Rabi fre-
quency |�e|2 = [ α

1+α2 ω12]2 + |�1|2 + |�2|2. When (γ −
iωe)

2 << 4|�e|2, we have λ1,2
.= γ

2 − i ωe
2 ± i|�e|. Sub-

stituting A1(t) = (e−λ1tα1 + e−λ2tα2 + α3)ei�1t, where α1,
α2, α3 correspond to the initial state A1(0), of the
population evolution, we obtain:

ρa1a1(t) = ρ(0)
a1a1

(t) + ρ(1)
a1a1

(t) + ρ(2)
a1a1

(t), (5)

where the term ρ(0)
a1a1

(t)=|α1|2e−[λ1+λ∗
1]t + |α2|2e−[λ2+λ∗

2]t+
|α3|2 is the trapping term and approaches |α3|2 as t
approaches infinity. ρ(1)

a1a1
(t) = α∗

1α3e−λ∗
1 t + α∗

2α3e−λ∗
2 t +

α1α
∗
3e−λ1t + α∗

3α2e−λ2t is related to the population os-
cillations and quantum beats. Moreover, the effect
of the high-frequency terms ρ(2)

a1a1
(t) = α1α

∗
2e−(λ1t+λ∗

2 t) +
α2α

∗
1e−(λ2t+λ∗

1 t) can be ignored here. This can also be
applied to the terms, ρa2a2(t) and ρbb (t).

Fig. 2 Quantum beats in the
population oscillations with a
ratio of dipole moments of
a α = 0.6, two upper level
spacing of b ω12 = 2.0γ20,
c spontaneous emission
spectra, and d two-photon
correlations. Other
parameters are the same as
those in Fig. 1
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After the simplification, the second term of ρa1a1(t)
becomes:

ρ(1)
a1a1

(t) ∝ cos �et cos
ωe

2
t. (6)

This is the main result of this paper. �e is the frequency
of the population oscillations. Its largest contributions
come from the Rabi frequencies �1,2. Its beat frequency
ωe/2 is determined by the spacing ω12 of the two upper
levels and the ratio α between the two dipole moments.
The mechanism of quantum beats is totally different
from that of previously reported QI phenomena, which
are caused either by external excitation fields [1–5] or
by the environment in which the atoms are embedded
[6–10]. Physically, this kind of quantum beat originates
from the interference between transition channels with
different dipole moments, and its frequency is deter-
mined by the intrinsic atomic parameters ω12 and α.
In this case, the parameters γ20 = 1.0, |−→μ 2| = 1.0, and
�2 = 10.0γ20. When ω12 = 3.0γ20 and α = 0.5, we can
clearly observe the oscillations in the populations and
their quantum beats with the frequencies �e = 11.24γ20

and ωe/2 = 0.9γ20, respectively (Fig. 1). The population

transfer between |a1〉 and |a2〉 is shown by the beat
terms of the population inversion ρa1a1 − ρa2a2 . In ad-
dition to ρa1a1 and ρa2a2 , there is also a slight beating in
the population oscillations in the lower level ρbb .

The effects of the upper level spacing ω12 and dipole
moment ratio α on quantum beats are discussed. From
above formulas, we see that for a fixed ω12 and increas-
ing α, the effective Rabi frequency �e increases and the
beat frequency ωe decreases. This is numerically shown
in Figs. 1 and 2a. By contrast, when α is fixed and ω12 is
increasing, the beat frequency ωe/2 also increases, but
the �e remains relatively stable. This can be seen in
Figs. 1 and 2b.

Generally, quantum beats in atomic populations can
not be measured directly. Therefore, we calculated
the spontaneous emission spectra S(ωk) with δ = ωk −
0.5(ωa1 + ωa2) + ωc and two-photon correlations g2(τ )

(|a1〉 ↔ |b〉 and |a2〉 ↔ |b〉) in the framework of quan-
tum regression theory [1, 2, 20]. As shown in Fig. 2c,
d, spontaneous emission cancellation [1, 2] and the
Rabi oscillation of the two-photon correlations occur
for an effective Rabi frequency �e. If one of the atomic
parameters, ω12 or α, is known, the other parameter can

Fig. 3 a Schematic of the
silver nanoantenna used to
excite the atoms and b its
normalized absorption. Here,
the incident field with
E0 = 1.0 propagates along
the z-axis and is polarized
along the x-axis. c Near-field
distributions Ex and Ez and d
modified decay rates γxx and
γzz for the xy-plane of 50 nm
from the metallic surface

(a)

(c)

(d)

(b)
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be monitored via the changes in the Rabi frequencies.
Therefore, the system may have potential applications
in the measurement of dipole moments [18].

Nanoscale Realization Through Resonant
Plasmonic Antenna

This quantum beat phenomenon can also be demon-
strated in the anisotropic vacuum, induced by the
anisotropy of the local states density of collective oscil-
lations of the free electrons in the plasmonic structure
[10, 14, 15]. The resonant optical nanoantenna [19],
as a representative of surface plasmons, can provide
nanoscale excitation of atoms and nanoscale decay rate
modifications, though with the present technology it
is difficult to locate an atom with nanometer accuracy
and stability near the antenna. Here, using the Green’s
tensor technique [24, 25], we designed a nanoantenna
composed of two 150 × 50 × 50-nm3 silver nanostripes
with a 30-nm gap (Fig. 3). Its dipole resonance is at
the wavelength of 780 nm and quadrupole resonance
is at 754 nm. Then we placed the atoms with dipole
transitions at 780 nm in the near-field region of the
nanoantenna. Only at a distance of 30∼100 nm from the
metallic surface is there a large near-field enhancement
and a strong anisotropy of the vacuum. If the atoms
are very close to the metal, their huge decay rates
will quench all fluorescence [26]. However, for atoms,

which are far away from the metal, the anisotropy of
the vacuum is too small.

For example, Fig. 3c, d displays the near electric field
distributions and decay rate modifications of the xy-
plane 50 nm from the metallic surface, respectively.
In this case, the large near-field enhancement and de-
cay rate modification can ensure the occurrence of a
nanoscale excitation and anisotropic vacuum. In some
nanoregions, the decay rates can be much less and
larger than that in the isotropic vacuum and can result
in enhanced and suppressed effects on spontaneous
emission, which is typical of cavity QED [27]. We
chose a location at the middle point on top of the first
nanostripe 50 nm from the metallic surface, where elec-
tric fields Ex = 27.34, Ez = 17.59, and γ(1,2)x/γ(1,2)0 =
0.6807 and γ(1,2)z/γ(1,2)0 = 2.374. Here, ω12 = 3.0γ20 and
α = 0.5. To ensure the significant beats, the Rabi fre-
quencies were normalized by 1/3 of amplitude of the
electric fields. With varying θ , the beat frequency ωe/2
does not change, but the effective Rabi frequency �e

changes dramatically. As shown in Fig. 4, the ampli-
tudes of the quantum beats of the trapped populations
and Rabi frequency in fluorescence spectra and two-
photon correlations are very sensitive to θ . Thus, the
anisotropy of vacuum and local field enhancement near
the resonant plasmonic antenna allow for the nanoscale
realization of this quantum phenomenon.

To test this phenomenon experimentally, we pro-
pose a scheme to use the rubidium 85 D2 tran-
sition hyperfine structure. This four-level system is

Fig. 4 Quantum beats in
population oscillations with
various spatial angles for a
θ = 0.0π , b θ = 0.25π , and c
θ = 0.5π and d spontaneous
emission spectra and e
two-photon correlations. θ is
defined in the inset of Fig. 1
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formed by two excited states |a1〉(52 P3/2, F = 3) and
|a2〉(52 P3/2, F = 2) and two ground states |b〉(52S1/2,

F = 3) and |c〉(52S1/2, F = 2). The hyperfine splitting
between two excite states is ω12 = 63MHz, and the de-
cay rate of the upper state to ground states is � = 2π ×
6 MHz (or γ20 = 6 MHz). The dipole moment ratio, α,
between |a1〉 ↔ |c〉 and |a2〉 ↔ |c〉 is (14/45)/(7/18) =
0.8 and ωe = 2.2γ20. If we use a driving electric field
with the value of E = (10.0 − 20.0)γ20, the effective
Rabi frequencies are �e = (9.0 − 16.0)γ20. Using cur-
rent nanofabrication techniques, the designed plas-
monic structure can be fabricated in the lab. Thus, an
experimental test should be possible.

Summary

We have observed intrinsic quantum beats of atomic
populations in a coherently driven four-level system.
The mechanism of this beat phenomenon is the inter-
ference between the transition channels with different
dipole moments, and beat frequency is determined
by the atomic parameters. Through the changes in
Rabi frequency, these parameters can be monitored via
spontaneous emission spectra and two-photon correla-
tions. Therefore, the system may be applied in the mea-
surement of dipole moments. We also used a resonant
plasmonic nanoantenna to realize the nanoscale control
of the amplitude of the quantum beats, the spontaneous
emission cancellation, and the Rabi oscillation of the
two-photon correlations through the anisotropy of the
near field and decay rates.
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