输出功率为 21.5 W 的单端抽运 Nd: YVO₄/LBO 单频激光器

郑耀辉 王雅君 彭堃墀

(山西大学光电研究所量子光学与光量子器件国家重点实验室,山西太原 030006)

摘要 采用中心波长为 888 nm 的激光二极管作为抽运源,减轻了 Nd: YVO₄晶体中的热效应。通过合理的谐振腔 设计,扩大激光晶体处的基模尺寸和振荡光在凹面腔镜处的入射角,减轻了激光晶体内部的热效应和谐振腔像散,提高了激光器的输出功率。采用四镜环形腔选模的办法,获得稳定的高功率单频激光输出。在吸收的抽运功率为 67.5 W 时,实现了最高功率为 21.5 W 的 532 nm 单频激光输出,其 8 h 功率稳定性优于±1%,光束质量 *M*² <1.1, 光-光转换效率为 31.9%。

关键词 激光器;单频激光器;直接抽运;Nd:YVO4晶体
 中图分类号 TN253 文献标识码 A doi: 10.3788/CJL201239.0602011

Single-end Pumping, Single-Frequency Nd:YVO₄/LBO Laser with Output Power of 21.5 W

Zheng Yaohui Wang Yajun Peng Kunchi

(State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, Shanxi 030006, China)

Abstract A laser diode with the central wavelength of 888 nm is used as the pump source to mitigate the thermal load in the pumping progress. Through the optimization of the ring cavity, the mode size in the Nd: YVO_4 crystal is enlarged, and the astigmatism of the cavity is minished. A figure "8" shaped ring cavity is employed to enforce the single-frequency operation. As a result, a stable, high-power, single-frequency green laser ($M^2 < 1.1$) of 21.5 W is obtained with the optical-optical conversion efficiency of 31.9%, and power stability of $\pm 1\%$ for 8 h. **Key words** lasers; single-frequency laser; direct pumping; Nd: YVO₄ crystal **OCIS codes** 140.3410; 140.3560; 140.3580; 140. 6810

1 引 言

全固态高功率单频绿光激光器可广泛应用于科 学研究的各个领域,比如抽运钛宝石激光器或染料 激光器,精确测量和高分辨率的激光光谱实现。然 而,在高功率抽运的条件下,激光增益介质中会产生 严重的热效应,这就限制了激光功率和光束质量的 进一步提高^[1~3]。因此,目前高功率固态激光器研 究的热点,主要是集中在研究激光晶体热效应特性 和减轻激光晶体中的热效应上^[2,4]。减轻激光晶体 热效应的方法包括采用复合增益介质^[5],低掺杂晶 体,双端抽运方式或者直接抽运的方式[4,6]。

目前已有多种方法能使激光器达到单纵模运转,例如用扭转模腔、短腔谐振、标准具选模及双折射滤光片选模等。但在设计高功率输出内腔倍频激 光器时,大多仍是利用环形谐振腔,消除空间烧孔效 应进行选模^[7,8]。然而,由于环形腔包含的腔内元 件太多,因而增加了激光器的内腔损耗,不利于高功 率单频激光器的获得。关于高功率单频激光器的研 制,国外主要以美国的相干公司为代表,形成了 Verdi V系列的单频绿光光源,在采用中心波长为

基金项目:国家自然科学基金(61008001)、国家 863 计划(2011AA030203)、国家 973 计划(2010CB923101)和山西省自然 科学基金(2011021003-2)资助课题。

作者简介:郑耀辉(1979—),男,副教授,主要从事全固态激光技术方面的研究。E-mail: yhzheng@sxu. edu. cn

收稿日期: 2012-01-16; 收到修改稿日期: 2012-03-06

808 nm 抽运源的情况下,其最高输出功率为 18 W; 德国的 ELS 公司则采用薄片晶体,实现了最高输出 功率为 15 W 的单频绿光光源。在国内,山西大学 光电研究所长期从事全固态单频激光器的研究工 作,但是受激光晶体热效应的影响,限制了激光器输 出功率的提高。

本文采用楔形 Nd: YVO4 晶体作为增益介质改 善了激光器的稳定性^[9],在单端抽运情况下,使用环 形谐振腔选模技术实现了高功率单频绿光激光输 出。采用中心波长为 888 nm 的激光二极管(LD)作 为抽运源,减轻了激光晶体的热效应。通过合理的 环形谐振腔设计,尽量保证在增益介质处获得较大 的基模尺寸并且缩小谐振腔腔镜处振荡光的入射角 度,减轻了增益介质处的热效应和环形腔的像散,提 高单频激光的输出功率。在吸收的抽运功率为 67.5 W时,单频绿光的最大输出功率达到了21.5 W, *M*² <1.1,光-光转换效率为 31.9%,光斑的椭圆率优 于0.16,输出绿光 8 h 功率稳定性优于±1%。

2 实验设计与装置

图 1 为实验装置图,谐振腔为四镜环形腔,其中 包含两个平面镜(M₁:S₁,减反(AR)888 nm;S₂,高 透(HT)888 nm,高反(HR)1064 nm 和 M₂:S₁,HR 1064 nm)和两个凹面镜(M3:S1, HR 1064 nm 和 $M_4: S_1, HR 1064 \text{ nm}, HT 532 \text{ nm}; S_2, HT 532 \text{ nm}_{\circ}$ R_{M3,M4}=100 mm)。增益介质采用 α-切割的楔形 Nd: YVO4 晶体(S1, S2: AR 888nm & 1064 nm), 掺 杂原子数分数为 0.8%, 尺寸为 $3 \text{ mm} \times 3 \text{ mm} \times$ (3+20) mm, 对 888 nm 抽运光的吸收效率为 89%。楔形晶体的设计可以起到偏振分束器的作 用,在不同偏振方向模式的竞争中,保证π偏振光优 先于σ偏振光在腔内起振,提高激光器的线偏振度 和偏振方向的稳定性^[9]。法拉第旋转器(TGG)和 半波片(HWP)组成的光学单向器使激光器实现单 向运转,获得稳定的单频输出。倍频晶体采用尺寸 为 3 mm×3 mm×15 mm 的 LBO 晶体(S_1 , S_2 :AR 1064 nm & 532 nm),通过自制的控温仪(控制精度 为 0. 01 ℃)将晶体温度控制为非临界相位匹配温度 149 ℃。抽运源采用光纤耦合输出的激光二极管 (LIMO-F400-DL888-EX1458), 中心波长为 888 nm,最大输出功率为90W,光纤芯径为 400 µm,数值孔径为 0.22。激光二极管输出的激光 光束经传输效率为 96% 的望远系统整形后聚焦于 Nd: YVO4 晶体内。

图 1 实验装置图 Fig. 1 Experiment setup

与中心波长为 808 nm 激光二极管抽运相比, 采用中心波长为 888 nm 的激光二极管抽运具有两 个优点:1) 采用 888 nm 直接抽运方式减小了量子 亏损产生的热,例如,要获得1064 nm 激光输出,与 808 nm 抽运相比, 热负荷将从 24.1% 缩减为 16.5%,这样在激光的抽运过程中,增益介质会吸收 更多的抽运功率而保证热负荷不会增加;2)888 nm 抽运方式无偏振吸收的特性在降低热效应的同时也 改善了激光器工作的稳定性。为了定量地描述晶体 的热效应,使用 LASCAD 软件分析了 888 nm 和 808 nm 抽运方式在吸收了相同的抽运功率下晶体 内部的温度分布。首先,选用掺杂原子数分数为 0.8%,尺寸为3 mm×3 mm×(3+20) mm 的 Nd: YVO4晶体,该晶体对波长为888 nm 抽运光的吸收 效率为89%。其次,采用掺杂原子数分数为0.2%, 尺寸为 $3 \text{ mm} \times 3 \text{ mm} \times (3+20) \text{ mm}$ 的 Nd: YVO₄ 晶体,当抽运光的波长为808 nm时,Nd:YVO4晶体 对抽运光的吸收效率为 95%。图 2 为在吸收了相 同的抽运功率条件及两种抽运方式下晶体内部在横 向和纵向的温度分布图。由图可见,采用 888 nm 抽运方式,增益介质中最高温度为 349.5 K(等价于 808 nm 抽运方式在抽运功率为 32 W 时的最高温

图 2 (a) 888 nm 与(b) 808 nm 抽运方式下, Nd: YVO₄ 晶体中的温度分布

度),比 808 nm 抽运方式低 72.6 K,与此同时,晶体 内部的温度分布也比较均匀。这就为单端面抽运方 式下径向温度分布不均匀提供了一种有效的解决方 案,从而简化了以往双端面抽运的实验装置,使单端 面抽运方式获得高功率单频运转成为可能。

其次,在高功率激光器的设计中,热透镜是一个 关键参数,要优化激光器的参数,就必须测量热透 镜[10~12],并分析热透镜对激光稳区和模式的影响, 通过合理的腔型设计减轻热透镜效应对激光器的影 响。在此设计中,通过对 888 nm 抽运时热效应的 分析,设计合理的谐振腔,扩大增益介质处基模模式 尺寸,进一步改善激光晶体处的热效应。此外,为了 获得单频激光输出,采用四镜环形谐振腔的设计,如 图1所示,该腔型中包含两面倾斜的凹面镜,因而会 引入额外的像散。于是在整个设计中,为了获得更 高功率的稳定单频激光输出,要尽量减小环形谐振 腔带来的像散。实验中,使用 30:75 的整形系统将 抽运光在激光增益介质处的腰斑直径扩大为1 mm, 谐振腔长度为 490 mm, 两凹面镜间距离为96 mm, 振荡光在腔镜处的入射角为 10°,此时基模模式在 增益介质中的光斑直径设计为 0.8 mm,与文献 [9] 相比,抽运光与基频光的光斑尺寸均得到了放大,这 将进一步改善激光晶体中的热效应。而谐振腔的像 散则无法完全消除,在谐振腔的设计上,尽量减小振 荡光在凹面腔镜处的入射角及凹面腔镜离轴入射引 入的像散影响。

3 实验结果与分析

通过分析,采用 888 nm 直接抽运和合理的谐 振腔设计,以及环形腔洗模的办法,最终在吸收的抽 运功率为 67.5 W 时,通过单端面抽运和内腔倍频 的方式获得了输出功率为 21.5 W 的稳定单频绿光 激光器。当抽运功率从阈值到 67.5 W 连续增加 时,输出的激光均可以保持良好的光束质量,并且输 出功率连续增加,如图3所示。图4为激光器输出 功率为 21.5 W 时,扫描法布里-珀罗(F-P) 腔得到 的单频曲线,证明激光器实现稳定单频运转。在输 出功率最大时,测得绿光激光器 8 h 功率稳定性优 于±1%,光束质量小于1.1,如图5所示。图5为 通过光束质量分析仪测量的光斑分布曲线图,光-光 转换效率为 31.9%。由实验结果可见,888 nm 直 接抽运方式和扩大激光晶体处基模光斑尺寸(与文 献[9]相比),极大地减轻了增益介质在高功率抽运 过程中产生的严重热效应,提高了激光器的输出功

图 5 光束质量测量结果

4 结 论

通过 LASCAD 软件分析了 888 nm 和 808 nm 抽运方式的热效应,与 808 nm 激光二极管抽运相 比,采用 888 nm 激光二极管抽运具有量子亏损小, 以及无偏振吸收的特性,可以有效减轻激光晶体的 热效应。通过合理的腔型设计,扩大了增益介质处 基模的光斑尺寸并且减小了谐振腔的像散。利用环 形腔选模方法,获得稳定的高功率单频绿光激光输

光

出。在吸收的抽运功率为 67.5 W 时,采用单端抽 运方式获得了最高功率为 21.5 W 的单频绿光激光 输出,其光-光转换效率达到 31.9%,光束质量*M*² < 1.1,8 h 功率稳定性优于±1%。

参考文献

- 1 V. V. Zelenogorskii, E. A. Khazanov. Influence of the photoelastic effect on the thermal lens in a YLF crystal [J]. *Quantum Electron.*, 2010, 40(1): 40~44
- 2 P. J. Hardman, W. A. Clarkson, G. J. Friel *et al.*. Energytransfer upconversion and thermal lensing in high-power endpumped Nd : YLF laser crystals [J]. *IEEE J. Quantum Electron.*, 1999, **35**(4): 647~655
- 3 H. Vanherzeele. Continuous wave dual rod Nd: YLF laser with dynamic lensing compensation [J]. Appl. Opt., 1989, 28(19): 4042~4044
- 4 L. McDonagh, R. Wallenstein, R. Knappe et al.. Highefficiency 60 W TEM₀₀ Nd: YVO₄ oscillator pumped at 888 nm [J]. Opt. Lett., 2006, **31**(22): 3297~3299

5 Zhao Zhigang, Dong Yantao, Pan Sunqiang *et al.*. Investigation on LD double-end-pumped high power Q-switched YVO₄-Nd: YVO₄-YVO₄ fundamental mode solid state laser[J]. *Chinese J. Lasers*, 2010, **37**(9): 2409~2414 赵智刚, 董延涛, 潘孙强等. LD 双端抽运 YVO₄-Nd: YVO₄-YVO₄ 复合晶体的高功率调 Q 基模固体激光器研究[J]. 中国激

光, 2010, **37**(9): 2409~2414 6 Ai Qingkang, Chang Liang, Chen Meng *et al.*. Thermal analysis of Nd: YVO4 pumped by 808 nm and 888 nm[J]. *Chinese J*.

Lasers, 2011, **38**(4): 0402001 艾庆康,常 亮,陈 檬等. 808 nm 与 888 nm 抽运 Nd: YVO₄ 热效应分析[J]. 中国激光, 2011, **38**(4): 0402001 7 Zheng Yaohui, Li Fengqin, Zhang Kuanshou *et al.*. Progress of all-solid-state single-frequency lasers [J]. *Chinese J. Lasers*, 2009. **36**(7): 1635~1642

郑耀辉,李凤琴,张宽收等.全固态单频激光器研究进展[J]. 中国激光,2009,**36**(7):1635~1642

8 Zheng Yaohui, Lu Huadong, Li Fengqin *et al.*. All-solid-state high-efficiency high-power Nd : YVO4/KTP laser of singlefrequency operation [J]. *Chinese J. Lasers*, 2007, **34** (6): 739~742

郑耀辉, 卢华东, 李凤琴等. 全固态高输出功率单频 Nd: YVO₄/KTP 激光器[J]. 中国激光, 2007, **34**(6): 739~742

- 9 Y. H. Zheng, F. Q. Li, Y. J. Wang *et al.*. High-stability single-frequency green laser with a wedge Nd : YVO₄ as a polarizing beam splitter [J]. *Opt. Commun.*, 2010, **283** (2): 309~312
- 10 Zheng Yaohui, Wang Yajun, Peng Kunchi. Thermal lens determination in solid-state laser by using an astigmatic cavity [J]. *Chinese J. Lasers*, 2011, 38(9): 0908006
 郑耀辉, 王雅君, 彭堃墀. 一种利用像散腔测量热透镜焦距的方 法[J]. 中国激光, 2011, 38(9): 0908006
- 11 Li Bingbin, Guo Zhen, Wang Shiyu *et al.*. Modeling of longitudinally nonuiform thermal lensing in diode end-pumped solid-state lasers[J]. *Chinese J. Lasers*, 2011, 38(s1): s102005
 李兵斌,过振,王石语等. 二极管端面抽运固体激光器中晶体 热透镜轴向不均匀性研究[J]. 中国激光, 2011, 38(s1): s102005
- 12 Pan Sunqiang, Liu Chong, Zhao Zhigang et al.. Thermal effects and thermal focal length measurement of laser diode end-pumped solid-state lasers [J]. Chinese J. Lasers, 2010, 37 (10): 2445~2450

潘孙强,刘 崇,赵智刚等.激光二极管端面抽运固体激光器的 热效应和热透镜焦距测量[J].中国激光,2010,**37**(10): 2445~2450

栏目编辑:李文喆