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The wave–particle duality of a single particle with an n-dimensional internal degree of freedom is re-examined theo-
retically in a Mach–Zehnder interferometer. The famous duality relation D2+V 2 ≤ 1 is always valid in this situation, where
D is the distinguishability and V is the visibility. However, the sum of the particle information and the wave information,
D2 +V 2, can be smaller than one for the input of a pure state if this initial pure state includes the internal degree of freedom
of the particle, while the quantity D2 +V 2 is always equal to one when the internal degree of freedom of the particle is
excluded.
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1. Introduction
The principle of complementarity, proposed by Bohr in

1928,[1] lies at the heart of quantum mechanics. Complemen-
tarity emphasizes equally real but mutually exclusive proper-
ties, such as those in the wave–particle duality. For two com-
plementary properties, an observation of either one precludes
the simultaneous observation of the other. Young’s double-
slit experiment provides a good example of wave–particle
duality.[2–5] Besides the all-or-nothing cases, some interme-
diate situations actually exist,[3–10] with partial which-path
knowledge and reduced interference visibility. An inequal-
ity, D2 +V 2 ≤ 1, theoretically derived by Jaeger et al.[11] and
Englert,[12] can be used to quantify the wave–particle duality,
where D is the distinguishability and V is the visibility. This
duality relation is valid even in a delayed-choice manner, and
the setup for Wheeler’s delayed-choice experiment[13,14] is
shown in Fig. 1(a). A particle is sent into a Mach–Zehnder in-
terferometer (MZI) and split into two paths after the first beam
splitter (BS1). The second beam splitter (BS2) is randomly ei-
ther inserted or removed after the particle is already inside the
interferometer. By inserting or removing BS2, we can observe
the wave or particle behavior. The duality (complementarity)
relation was confirmed experimentally.[15] Recently, a theoret-
ical proposal[16] suggested that the second beam splitter, in-
stead of being randomly inserted or not, can be controlled by
an ancillary state |φ〉 = c̃1|0〉a + c̃2|1〉a (with |c̃1|2 + |c̃2|2 = 1
and a〈0|1〉a = 0); see Fig. 1(b). The second beam splitter is

present (absent), when the ancillary state is |1〉a (|0〉a). That
is to say, the second BS is in a superposition of presence and
absence.[16,17] The second BS is also called a quantum beam
splitter (Q-BS). The final state is a superposition of the particle
and wave states, and consequently, we can test the particle and
wave behaviors of the particle at the same time.[17–19]

In Fig. 1(b), the ancillary state can be considered to be
the two dimensions of the internal degree of freedom of the
particle.[17,18] The control of the presence and absence of the
BS2 can be realized by controlling the two-dimensional in-
ternal degree of freedom. That is to say, we can use a 2× 2
transformation matrix to describe the action of the Q-BS. For
a lossless beam splitter, the matrix is unitary. The second beam
splitter in Fig. 1(a) will be replaced by a new device, U , which
transforms paths 1 and 2 to paths 1′ and 2′; see Fig. 2.

The two-dimensional internal degree of freedom of the
ancillary state can be extended to an n-dimensional (n > 2) in-
ternal degree of freedom. In this paper, we share an account
of our theoretical study of the duality relation with an ancil-
lary system involved, and we discuss the duality relation for a
single particle with a general n-dimensional internal degree of
freedom (components) that is sent to an MZI setup which has a
U device. The U device can change both the paths and the in-
ternal degree of freedom, and can be represented by a 2n×2n
unitary matrix if the loss is neglected. We confirm the duality
relation D2 +V 2 ≤ 1 theoretically and find that this relation is
still valid in the general situation.

∗Project supported by the National Basic Research Program of China (Grant No. 2012CB921603) and the National Natural Science Foundation of China (Grant
Nos. 11125418 and 11364022).

†Corresponding author. E-mail: jiaaiai1988@163.com
© 2014 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn

030307-1

http://dx.doi.org/10.1088/1674-1056/23/3/030307
jiaaiai1988@163.com
http://iopscience.iop.org/cpb
http://cpb.iphy.ac.cn


Chin. Phys. B Vol. 23, No. 3 (2014) 030307

BS1
BS2

1'

2'

2

1

P1

P2
H H>in ϕ

ϕ

(a) (b)

φ>/c0>a⇁c1>a

ψ>/↼1>1⇁eiϕ1>2↽/

~ ~

Fig. 1. (color online) (a) A schematic wave–particle duality experiment. By inserting or removing BS2, we can observe the wave or particle behavior,
respectively. (b) Schematic diagram of a wave–particle duality experiment with a Q-BS, where the presence or absence of the second beam splitter is
represented by the ancillary state |φ〉, which is a superposition of its presence and absence (the second beam splitter itself is represented by a Hadamard
operation H2).
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Fig. 2. (color online) The Mach–Zehnder interferometer setup. BS is
a 50:50 beam splitter, PZT is a piezoelectric transducer, M is a mirror,
U stands for an unknown device, and P1 and P2 are the single-photon
detectors.

2. Duality of a single particle with an n-
dimensional internal degree of freedom
In a Mach–Zehnder interferometer, the distinguishability

used to quantify the particle-like behavior has two different
aspects.[12] First, the a priori distinguishability, also called the
predictability, measures the which-way knowledge carried in
the initial state of the single particle. Second, the a posteri-
ori distinguishability measures the which-way knowledge we
actually obtained in an experiment. This a posteriori distin-
guishability can be measured either by creating an entangle-
ment between the particle and a which-way marker,[20,21] or
by using an interferometer with an output beam splitter.[15]

Here we choose the second case to study the duality for a sin-
gle particle with an n-dimensional internal degree of freedom;
see Fig. 2. And we use the definition of distinguishability (D)

given in Ref. [15] as

D =
D1 +D2

2
, (1a)

D1 = |p11− p12||path 2 blocked,

D2 = |p21− p22||path 1 blocked, (1b)

where puv is the probability that the particle follows path
u (the other path is blocked) and is detected by detector v
(u,v = 1,2). The factor 1/2 in Eq. (1a) is due to the 50% prob-
ability, as one of the two paths is blocked.

Defined in Ref. [15], the visibility V of the interference
pattern, used to describe the wave-like information, is deter-
mined by the maximum and the minimum intensities of the
interference fringes

V =
pmax− pmin

pmax + pmin
, (2)

where the maximum and the minimum values are obtained by
scanning the phase ϕ (via a piezoelectric transducer, PZT).

For the MZI in Fig. 2, a single input particle with an
n-dimensional internal degree of freedom is split by a 50:50
beam splitter into two paths. In path 2, a phase shift ϕ is intro-
duced by the PZT. All particles from the two paths are sent to
an unknown lossless device, which has two output paths, and
finally detected by two detectors P1 and P2, which are used to
record the particle numbers in paths 1′ and 2′. The initial state
of the input particle with an n-dimensional internal degree of
freedom is assumed to be a direct product of its internal degree
of freedom and path state

|ψ〉=

(
n

∑
i=1

ci|αi〉

)
|1〉in|0〉u, (3)

where
n
∑

i=1
|ci|2 = 1, n is an integer, and |αi〉 (i = 1,2, · · · ,n)

denote n orthogonal bases of the internal degrees of freedom,
for example, horizontal polarization and vertical polarization.
The subscripts in and u denote the paths. After the 50:50 BS
and the PZT, the state of the single particle becomes

|I〉= 1√
2

(
n

∑
i=1

ci|αi〉

)
(|1〉1|0〉2 + e iϕ |0〉1|1〉2), (4)

where the 2n basis

{|α1〉|1〉1|0〉2, |α2〉|1〉1|0〉2, . . . , |αn〉|1〉1|0〉2, |α1〉|0〉1|1〉2,
|α2〉|0〉1|1〉2, . . . , |αn〉|0〉1|1〉2}

can be rewritten as {|a1〉, |a2〉, . . . , |a2n〉}.
The unknown device, described by a unitary transforma-

tion U in the following, can be a simple beam splitter, a Q-
BS,[17,18] or the like. Its role is to exchange or mix the paths
and the internal degree of freedom. Note the device U must
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be a unitary matrix for a lossless device, which is a 2n× 2n
matrix. The output state after the U device is

|F〉=U |I〉. (5)

In the bases of the output state, {|b1〉, |b2〉, . . . , |b2n〉}, which
actually represent the bases

{|β1〉|1〉1′ |0〉2′ , |β2〉|1〉1′ |0〉2′ , . . . , |βn〉|1〉1′ |0〉2′ ,
|β1〉|0〉1′ |1〉2′ , |β2〉|0〉1′ |1〉2′ , . . . , |βn〉|0〉1′ |1〉2′},

with |βi〉 (i = 1,2, . . . ,n) being n orthogonal bases of the in-
ternal degree of freedom of the particle, and the final state in
Eq. (5) can be rewritten as

|F〉 = U |I〉

=
1√
2



u11 e iδ1α1 u12 e iδ1α2 · · · u1n e iδ1αn

u21 e iδ1α1 u22 e iδ1α2 · · · u2n e iδ1αn

...
...

. . .
...

un1 e iδ1α1 un2 e iδ1α2 · · · unn e iδ1αn

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
u1(n+1) e iδ2α1 u1(n+2) e iδ2α2 · · · u1(2n) e iδ2αn

u2(n+1) e iδ2α1 u2(n+2) e iδ2α2 · · · u2(2n) e iδ2αn

...
...

. . .
...

un(n+1) e iδ2α1 un(n+2) e iδ2α2 · · · un(2n) e iδ2αn

−u1(n+1) e iδ ′1α1 −u1(n+2) e iδ ′1α2 · · · −u1(2n) e iδ ′1αn

−u2(n+1) e iδ ′1α1 −u2(n+2) e iδ ′1α2 · · · −u2(2n) e iδ ′1αn

...
...

. . .
...

−un(n+1) e iδ ′1α1 −un(n+2) e iδ ′1α2 · · · −un(2n) e iδ ′1αn

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

u11 e iδ ′2α1 u12 e iδ ′2α2 · · · u1n e iδ ′2αn

u21 e iδ ′2α1 u22 e iδ ′2α2 · · · u2n e iδ ′2αn

...
...

. . .
...

un1 e iδ ′2α1 un2 e iδ ′2α2 · · · unn e iδ ′2αn


2n×2n



c1
c2
...

cn

c1 e iϕ

c2 e iϕ

...
cn e iϕ


2n×1

=


b1
b2
...

b2n


2n×1

. (6)

The expression of U can be found in Appendix A, Eq. (A5).

2.1. Visibility

The wavelike information of the light field is obtained by
measuring the visibility of the interference. Since the detec-
tors record the number of particles regardless of their internal
degree of freedom, the probability of particles at detector 1 is

p1 =
n

∑
i=1
〈bi|F〉〈F |bi〉=

n

∑
i=1
|bi|2

=
1
2

n

∑
i=1

(|Ai|2 + |Bi|2)+
√

M2 +N2 cos(ϕ− γ), (7)

where Ai, Bi, M, N, and γ are some parameters associated with
the elements of matrix U

Ai =
n

∑
j=1

ui j e iδ1α j c j, Bi =
n

∑
j=1

ui(n+ j) e iδ2α j c j, (7a)

M =
n

∑
i=1
|Ai||Bi|cosθi, N =

n

∑
i=1
|Ai||Bi|sinθi,

AiB∗i = |Ai||Bi|e iθi , (7b)

cosγ =
M√

M2 +N2
, sinγ =

N√
M2 +N2

, (7c)

n

∑
i=1

(|Ai|2 + |Bi|2) = 1. (7d)

Equation (7d) has been proven (see the details in Appendix B).
When all particles are detected by detector 1, an interfer-

ence pattern can be observed, as the length of path 2 is varied.

The maximum and the minimum values can be obtained by
adjusting the phase ϕ . Then we obtain the visibility V for the
single particle with an n-dimensional internal degree of free-
dom

V =
p1max− p1min

p1max + p1min

= 2

√√√√ n

∑
i=1
|Ai|2|Bi|2 +2

n−1

∑
i=1

n

∑
i′=i+1

|Ai||Bi||Ai′ ||Bi′ |cos(θi−θi′).

(8)

We obtain the same visibility if we detect all particles by de-
tector 2.

2.2. Distinguishability

In order to obtain the distinguishability D, we block one
path of the interferometer and measure the probabilities of par-
ticles on detectors P1 and P2.[15] The two paths cannot be dis-
tinguished at all if D = 0, and can be fully distinguished if
D = 1. First, we block path 2 after the 50:50 BS in Fig. 2. The
states before and after U , respectively, become

|I′〉=

(
n

∑
i=1

ci|αi〉

)
|1〉1|0〉2,

|F ′〉=U |I′〉=


b′1
b′2
...
b′2n


2n×1

, (9)
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with |b′1|2 + |b′2|2 + · · ·+ |b′2n|2 = 1. The probabilities of par-
ticles being detected by detectors 1 and 2 (via path 1) can be
obtained, with the probabilities p11 and p12 being

p11 =
n

∑
i=1
〈bi|F ′〉〈F ′|bi〉=

n

∑
i=1
|b′i|2,

p12 =
n

∑
i=1
〈bn+i|F ′〉〈F ′|bn+i〉=

n

∑
i=1
|b′n+i|2. (10)

By substituting Eq. (10) into Eq. (1b), we have

D1 =

∣∣∣∣∣2
(

n

∑
i=1
|Ai|2

)
−1

∣∣∣∣∣ . (11)

For D2, a similar measurement is implemented when path 1 is
blocked,

D2 =

∣∣∣∣∣2
(

n

∑
i=1
|Bi|2

)
−1

∣∣∣∣∣ . (12)

By using Eq. (7d), we obtain the distinguishability

D =
D1 +D2

2
=

∣∣∣∣∣ n

∑
i=1

(|Ai|2−|Bi|2)

∣∣∣∣∣ . (13)

2.3. Duality

The combination of Eqs. (8) and (13) leads to the follow-
ing complementarity relation:

(D2 +V 2)−1

= (D2 +V 2)−

∣∣∣∣∣ n

∑
i=1

(|Ai|2 + |Bi|2)

∣∣∣∣∣
2

= −4
n

∑
i,i′=1(i′ 6=i)

|Ai|2|Bi′ |2

+ 8
n−1

∑
i=1

n

∑
i′=i+1

|Ai||Bi||Ai′ ||Bi′ |cos(θi−θi′). (14)

Here, we discuss it from two aspects. First, if all the parame-
ters |Ai|, |Bi| 6= 0, we have

(D2 +V 2)−1

≤ −4
n

∑
i,i′=1 (i′ 6=i)

(|Ai||Bi′ |− |Ai′ ||Bi|)2 ≤ 0, (15a)

with the equal sign holding for

θi−θi′ = 2kπ (k is an integer), |Ai||Bi′ |− |Ai′ ||Bi|= 0,

(i, i′ = 1,2, · · · ,n; i 6= i′). (15b)

Second, if one or more than one of the parameters |Ai|, |Bi|
(i = 1,2, · · · ,n) is equal to 0, such as |A j|= 0, we have

(D2 +V 2)−1

= −4
n

∑
i,i′=1(i′ 6=i,i6= j)

|Ai|2|Bi′ |2

+ 8
n−1

∑
i=1(i6= j)

n

∑
i′=i+1(i′ 6= j)

|Ai||Bi||Ai′ ||Bi′ |cos(θi−θi′)

≤ −4|B j|2
n

∑
i=1(i 6= j)

|Ai|2

− 4
n

∑
i,i′=1(i′ 6=i 6= j)

(|Ai||Bi′ |− |Ai′ ||Bi|)2 ≤ 0, (16a)

with the equal sign holding for

|B j|2
n

∑
i=1(i6= j)

|Ai|2 = 0,

{ |Ai||Bi′ |− |Ai′ ||Bi|= 0,

θi−θi′ = 2kπ,
(i′ 6= i 6= j, k is an integer).

(16b)

Equations (15a) and (16a) tell us that the duality relation

D2 +V 2 ≤ 1 (17)

is still valid for a single particle with an n-dimensional inter-
nal degree of freedom. Please note that we can have D2 +V 2

smaller than one even though the input state before the device
U is a pure state (with the internal degree of freedom).

If the input particle is at one state of the internal de-
gree of freedom, we can prove that D2 + V 2 = 1 is still
valid. Let us assume that the state of the input particle is
at internal degree of freedom state |α1〉 (c1 = 1 and c j =

0 ( j > 1)), |I〉 = |α1〉(|1〉1|0〉2 + e iϕ |0〉1|1〉2)/
√

2. From
Eq. (7a), we have |Ai| = |ui1|, |Bi| = |ui(n+1)|, and θi =

δ1α1 − δ2α1 (i = 1,2, . . .n). According to Eq. (B5), we get
|ui1||ui′(n+1)| = |ui(n+1)||ui′1| (i, i′ = 1,2, . . . ,n; i 6= i′), which
leads to |Ai||Bi′ | − |Bi||Ai′ | = 0. According to Eq. (15b), we
have D2 +V 2 = 1.

Now let us consider a simple example (a single particle
with a two-dimensional internal degree of freedom). Assume
the input state and the U matrix to be

|I〉= 1√
2

(
1√
2
|α1〉+

1√
2
|α2〉

)
(|1〉1|0〉2 + e iϕ |0〉1|1〉2),

U =



1√
2

e iδ1α 0
1√
2

e iδ2α 0

0 1 0 0

− 1√
2

e iδ ′1α 0
1√
2

e iδ ′2α 0

0 0 0 1


,

which leads to |A1| = 1/2, |B1| = 1/2, |A2| = 1/
√

2, |B2| =
0, θ1 = δ1α1 − δ2α1 , and θ2 = 0. Consequently, we have
D2 +V 2 = 0.5, which is less than 1 even when the initial state
is a pure state.
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3. Quantum beam splitter (Q-BS)
The U device Q-BS is a special case of a particle with

a two-dimensional internal degree of freedom,[17,18] as shown
in Fig. 3. A particle is sent into an MZI setup and split into
two paths after the first beam splitter (BS1). The first half-
wave plate (HWP) is used to rotate the polarization in path 1
and path 2 by the same angle α . Then the particles are split
by the first polarization beam splitter (PBS) into two compo-
nents. One component goes through a closed MZI setup (with-
out BS2), while the other goes through an open MZI setup
(with BS2). In the end, they are recombined by the second
PBS. Then the particles are detected by detectors P1 and P2.
Here, vertical polarization and horizontal polarization are the
two dimensions of the internal degree of freedom.

beam splitter

mirror

HWP

PBS

BS1

BS2

in 2
1

7

8

6 5
3

4

10

11

12

9

PZT(ϕ) α

U 1'

2'
P1

P2

Fig. 3. (color online) Schematic diagram of a particular Q-BS. A parti-
cle is sent into an MZI setup and split into two paths after BS1 (50:50
beam splitter). The first HWP is used to rotate the polarization in path 1
and path 2 by the same angle α . Then the particles are split by the first
PBS into two components. One component goes through a closed MZI
(without BS2), and the other is reflected to the other direction and goes
through an open MZI (with BS2, which has reflectivity R and transmis-
sivity 1−R). Finally, they are recombined by the second PBS.

For this Q-BS scheme, the state before the Q-BS is

|I〉 = 1√
2
(cosα|H〉+ sinα|V 〉)

× (|1〉1|0〉2 + e iϕ |0〉1|1〉2), (18)

where |H〉 and |V 〉 denote the horizontal polarization and the
vertical polarization, respectively, and the subscripts denote
the paths. The expression of U for this Q-BS is shown in Ap-
pendix C. Then the final state becomes

|F〉=U |I〉= cosα|P〉|H〉+ sinα|W 〉|V 〉, (19a)

with

|W 〉 = 1√
2
[e iδ1(

√
1−R+

√
Re i(δ0+ϕ))|1〉1′

− e iδ2(
√

R−
√

1−Re i(δ0+ϕ))|1〉2′ ],

|P〉 = 1√
2
[|1〉1′ + e iϕ |1〉2′ ].

After tracing out the internal degree of freedom, the final state
becomes

ρ = Trinternal|F〉〈F |= sin2
α|W 〉〈W |+ cos2

α|P〉〈P|. (19b)

We detect the probability of particles at detector P1 or P2. Ac-
cording to Eq. (2), the visibility can be obtained as follows:

p1 = 1′〈1|ρ|1〉1′ =
1
2
+
√

R(1−R)cos(φ +δ0)sin2
α, (20a)

p2 = 2′〈1|ρ|1〉2′ =
1
2
−
√

R(1−R)cos(φ +δ0)sin2
α,(20b)

V = 2
√

R(1−R)sin2
α. (21)

For distinguishability, we block one path after BS1 in Fig. 3
and detect the probabilities of particles at detectors P1 and P2.
Thus we obtain D1 by using Eq. (1b), and D2 can be obtained
in the same way when we block the other path. According to
Eq. (1a), the distinguishability is

D1 = |1−2Rsin2
α|, D2 = |1−2Rsin2

α|, (22a)

D =
D1 +D2

2
= |1−2Rsin2

α|. (22b)

Consequently, we have the inequality for the duality of Q-BS

D2 +V 2 = 1−4Rsin2
α cos2

α ≤ 1. (23)

For R = 0 or cosα = 0 or sinα = 0, we have the equal sign.
For R = 0.5, the BS2 in Fig. 3 is a 50:50 beam splitter. Thus
we have D2+V 2 = sin4

α+cos4 α ≤ 1. Figure 4 shows the re-
sults for D2, V 2, D2 +V 2 as a function of angle α . Please note
that the curve in Fig. 4 of Ref. [18] is D+V (not D2 +V 2).

20 40 60 80

1.0

0.8

0.6

0.4

0.2

V


D


D

⇁V



α/(Ο)

Fig. 4. (color online) For R = 0.5 in the Q-BS device, we obtain
D2 +V 2 ≤ 1 for all angles. The red, blue, and black lines show the
respective results for V 2, D2, D2 +V 2 as functions of angle α .

Here, equation (19b) is not the superposition state of |W 〉
and |P〉, because 〈H|V 〉= 0. In order to have the superposition
state of |W 〉 and |P〉 with constant coefficients, an additional
device for polarization (as a projection) is needed, which re-
sults in the superposition state of |W 〉 and |P〉 with certain
probability. However, the projection results in particle loss
(with certain probability). Consequently, the records at the
two detectors will not be related to the distinguishability and
visibility.
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4. Conclusion
The duality of a particle with an n-dimensional internal

degree of freedom passing through an MZI setup with a quan-
tum device U is studied. The duality relation D2 +V 2 ≤ 1 is
always valid, regardless of the state of the internal degree of
freedom. The experiments performed with Q-BS[17,18] are a
particular case of the U device with n = 2. It is well known
that for any pure state input without the internal degree of free-
dom, we have D2 +V 2 = 1. However, with the internal degree
of freedom, we find that D2 +V 2 can be smaller than one for a
pure state input. The case of a two-dimensional internal degree
of freedom is a particular case of an n-dimensional internal de-
gree of freedom, and the duality relation D2 +V 2 ≤ 1 is still
valid for an internal degree of freedom with more than two
dimensions.

Appendix A: The expression of 𝑈
Let us consider the expression for the U matrix, whose

role is exchanging or mixing of the paths and the states of the
internal degree of freedom. This will be easy by considering
the transfer of the annihilation (or creation) operators. The
device of U is lossless. Let us consider the annihilation opera-
tors before the U device, which are a1αi , a2αi (i = 1,2, . . . ,n),
(a+jαi
|0〉 = |αi〉|1〉 j with j = 1,2), while the annihilation op-

erators after the U device are a1′αi , a2′αi (i = 1,2, . . . ,n),
(a+j′αi

|0〉 = |αi〉|1〉 j′ with j′ = 1, 2). Here the subscripts of
the operators represent the path and the internal information,
a(path)(internal). For the U device in Fig. 2, these operators sat-
isfy the following transformation:

a1′α1
a1′α2
...
a1′αn
a2′α1
a2′α2
...
a2′αn


=U



a1α1
a1α2
...
a1αn

a2α1
a2α2
...
a2αn


, (A1)

which can be generally written as follows:

a1′α1

= (u11 e iδ1α1 a1α1 +u1(n+1) e iδ2α1 a2α1)

+ (u12 e iδ1α2 a1α2 +u1(n+2) e iδ2α2 a2α2)+ · · ·
+ (u1n e iδ1αn a1αn +u1(2n) e iδ2αn a2αn),

a1′α2

= (u21 e iδ1α1 a1α1 +u2(n+1) e iδ2α1 a2α1)

+ (u22 e iδ1α2 a1α2 +u2(n+2) e iδ2α2 a2α2)+ · · ·
+ (u2n e iδ1αn a1αn +u2(2n) e iδ2αn a2αn),

...

a1′αn

= (un1 e iδ1α1 a1α1 +un(n+1) e iδ2α1 a2α1)

+ (un2 e iδ1α2 a1α2 +un(n+2) e iδ2α2 a2α2)+ · · ·
+ (unn e iδ1αn a1αn +un(2n) e iδ2αn a2αn),

a2′α1

= (u(n+1)1 e iδ ′1α1 a1α1 +u(n+1)(n+1) e iδ ′2α1 a2α1)

+ (u(n+1)2 e iδ ′1α2 a1α2 +u(n+1)(n+2) e iδ ′2α2 a2α2)+ · · ·

+ (u(n+1)n e iδ ′1αn a1αn +u(n+1)(2n) e iδ ′2αn a2αn),

a2′α2

= (u(n+2)1 e iδ ′1α1 a1α1 +u(n+2)(n+1) e iδ ′2α1 a2α1)

+ (u(n+2)2 e iδ ′1α2 a1α2 +u(n+2)(n+2) e iδ ′2α2 a2α2)+ · · ·

+ (u(n+2)n e iδ ′1αn a1αn +u(n+2)(2n) e iδ ′2αn a2αn),

...

a2′αn

= (u(2n)1 e iδ ′1α1 a1α1 +u(2n)(n+1) e iδ ′2α1 a2α1)

+ (u(2n)2 e iδ ′1α2 a1α2 +u(2n)(n+2) e iδ ′2α2 a2α2)+ · · ·

+ (u(2n)n e iδ ′1αn a1αn +u(2n)(2n) e iδ ′2αn a2αn), (A2)

where we have assumed that the phases are accumulated due to
the propagation, and there is no phase accumulation for chang-
ing the internal degree of freedom, and umn are real. Here δ jαi

(with j = 1, 2 and i = 1,2, . . . ,n) denotes the phase difference
from path j with internal degree of freedom state αi to path 1′;
δ ′jαi

(with j = 1, 2) denotes the phase difference from path j
with internal degree of freedom state αi to path 2′.

In the MZI setup, the mixing of the two paths must com-
ply with quantum mechanics, i.e., the commutation relation
must be satisfied. The commutation relation can generally be
written as {

a1′Φ = sinθa1Φ + cosθa2Φ,
a2′Φ =−cosθa1Φ + sinθa2Φ,

(A3)

for the same state of the internal degree of freedom. According
to the commutation relation, we can find

u(n+1)1 =−u1(n+1), u(n+1)2 =−u1(n+2), . . . ,
u(n+1)n =−u1(2n), u(n+1)(n+1) = u11,
u(n+1)(n+2) = u12, . . . , u(n+1)(2n) = u1n,
u(n+2)1 =−u2(n+1), u(n+2)2 =−u2(n+2), . . . ,
u(n+2)n =−u2(2n), u(n+2)(n+1) = u21,
u(n+2)(n+2) = u22, . . . , u(n+2)(2n) = u2n,
· · ·
u(2n)1 =−un(n+1), u(2n)2 =−un(n+2), . . . ,
u(2n)n =−un(2n), u(2n)(n+1) = un1,
u(2n)(n+2) = un2, . . . , u(2n)(2n) = unn.

(A4)

Based on Eqs. (A1) and (A4), the unitary matrix U can be
written as
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U =



u11 e iδ1α1 u12 e iδ1α2 · · · u1n e iδ1αn

u21 e iδ1α1 u22 e iδ1α2 · · · u2n e iδ1αn

...
...

. . .
...

un1 e iδ1α1 un2 e iδ1α2 · · · unn e iδ1αn

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
u1(n+1) e iδ2α1 u1(n+2) e iδ2α2 · · · u1(2n) e iδ2αn

u2(n+1) e iδ2α1 u2(n+2) e iδ2α2 · · · u2(2n) e iδ2αn

...
...

. . .
...

un(n+1) e iδ2α1 un(n+2) e iδ2α2 · · · un(2n) e iδ2αn

−u1(n+1) e iδ ′1α1 −u1(n+2) e iδ ′1α2 · · · −u1(2n) e iδ ′1αn

−u2(n+1) e iδ ′1α1 −u2(n+2) e iδ ′1α2 · · · −u2(2n) e iδ ′1αn

...
...

. . .
...

−un(n+1) e iδ ′1α1 −un(n+2) e iδ ′1α2 · · · −un(2n) e iδ ′1αn

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

u11 e iδ ′2α1 u12 e iδ ′2α2 · · · u1n e iδ ′2αn

u21 e iδ ′2α1 u22 e iδ ′2α2 · · · u2n e iδ ′2αn

...
...

. . .
...

un1 e iδ ′2α1 un2 e iδ ′2α2 · · · unn e iδ ′2αn


2n×2n

, (A5)

with the normalization conditions U+U =UU+ = I.

Appendix B: The proof of
n
∑

i=1
(|Ai|2 + |Bi|2) = 1

As the normalization condition U+U =UU+ = I, we can
obtain the following coefficients’ relations:

2n

∑
j=1

∣∣ui j
∣∣2 = 1, (i = 1,2, . . . ,2n), (B1)

2n

∑
i=1

∣∣ui j
∣∣2 = 1, ( j = 1,2, . . . ,2n), (B2)

δ1αi −δ2αi = δ
′
1αi
−δ

′
2αi

, (with i = 1,2, . . . ,n), (B3)

up1um1 +up2um2 + · · ·+up(2n)um(2n) = 0,

(here p,m = 1,2, . . . ,n; p 6= m), (B4)

upqum(n+q) = up(n+q)umq,

(here p,q,m = 1,2, . . . ,n; p 6= m), (B5)

u1pu1q +u2pu2q + . . .+unpunq = 0,

(here p,q = 1,2, . . . ,n; p 6= q), (B6)

u1(n+p)u1(n+q)+u2(n+p)u2(n+q)+ . . .+un(n+p)un(n+q) = 0,

(here p,q = 1,2, . . . ,n; p 6= q). (B7)

Based on Eqs. (B1), (B2), (B6), (B7), (A4), and (7a), we
can obtain

n

∑
i=1

(|Ai|2 + |Bi|2)

= |A1|2 + |B1|2 + |A2|2 + |B2|2 + · · ·+ |An|2 + |Bn|2

= (u2
11 +u2

21 + · · ·+u2
(2n)1) |c1|2

+ (u2
12 +u2

22 + · · ·+u2
(2n)2) |c2|2 + · · ·

+ (u2
1n +u2

2n + · · ·+u2
(2n)n) |cn|2

+

[
2

n−1

∑
p=1

n

∑
q=p+1

u1pu1q
∣∣cp
∣∣ ∣∣cq

∣∣cos(δ1p−δ1q +αpq)

+ 2
n−1

∑
p=1

n

∑
q=p+1

u2pu2q
∣∣cp
∣∣ ∣∣cq

∣∣cos(δ1p−δ1q +αpq)+ · · ·

+ 2
n−1

∑
p=1

n

∑
q=p+1

unpunq
∣∣cp
∣∣ ∣∣cq

∣∣cos(δ1p−δ1q +αpq)

+ 2
n−1

∑
p=1

n

∑
q=p+1

u(n+1)pu(n+1)q
∣∣cp
∣∣ ∣∣cq

∣∣cos(δ ′1p−δ
′
1q +αpq)

+ 2
n−1

∑
p=1

n

∑
q=p+1

u(n+2)pu(n+2)q
∣∣cp
∣∣ ∣∣cq

∣∣cos(δ ′1p−δ
′
1q +αpq)

+ · · ·+2
n−1

∑
p=1

n

∑
q=p+1

u(2n)pu(2n)q
∣∣cp
∣∣ ∣∣cq

∣∣
× cos(δ ′1p−δ

′
1q +αpq)

]
= 1+2

n−1

∑
p=1

n

∑
q=p+1

(u1pu1q +u2pu2q + · · ·

+ unpunq)
∣∣cp
∣∣ ∣∣cq

∣∣cos(δ1p−δ1q +αpq)

+ 2
n−1

∑
p=1

n

∑
q=p+1

(u(n+1)pu(n+1)q +u(n+2)pu(n+2)q + · · ·

+ u(2n)pu(2n)q)
∣∣cp
∣∣ ∣∣cq

∣∣cos(δ ′1p−δ
′
1q +αpq)

= 1. (B8)

Appendix C: The expression of U in Section 3

Based on Eq. (A1), we can derive the expression of U
in Fig. 3 as follows. After the first PBS, the particles with
horizontal polarization would go through a closed MZI setup
(without beam splitter), while the particles with vertical po-
larization go through an open MZI setup (with beam splitter).
After the first PBS, we can find the relations

a3H = a1H,
a5V = a1V,
a4H = a2H,
a6V = a2V,

(C1)

where the first subscript denotes the path, and the second sub-
script denotes the polarized information. Then after the second
beam splitter (BS2), we have

a3H = a1H,

a7V =
√

1−Ra5V e iδ1 +
√

Ra6V e i(δ1+δ0),
a4H = a2H,

a8V =−
√

Ra5V e iδ2 +
√

1−Ra6V e i(δ2+δ0),

(C2)

where δ1 denotes the phase shift from path 5 to path 7, δ2 de-
notes the phase shift from path 5 to path 8, and δ0 denotes the
phase difference between path 5 and path 6. Then the four
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HWPs rotate the polarization by 90◦. We have
a9H = a3H,
a11V = a7V,
a10H = a4H,
a12V = a8V,

(C3)

At last, they are recombined by the second PBS. So, we
have 

a1′H = a9H,
a1′V = a11V,
a2′H = a10H,
a2′V = a12V.

(C4)

Combining Eq. (A1) and Eqs. (C1)– (C4), we obtain

U =


1 0 0 0
0 e iδ1

√
1−R 0 e i(δ1+δ0)

√
R

0 0 1 0
0 −e iδ2

√
R 0 e i(δ2+δ0)

√
1−R

 . (C5)
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