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Experimental measurement of covariance matrix
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A two-mode entangled state was generated experimentally through mixing two squeezed lights from two optical parametric am-
plifiers on a 50/50 beam splitter. The entangled beams were measured by means of two pairs of balanced homodyne detection
systems respectively. The relative phases between the local beams and the detected beams can be locked by using the optical phase
modulation technique. The covariance matrix of the two-mode entangled state was obtained when the relative phase of the local
beam and the detected beam in one homodyne detection system is locked and the other is scanned. This method provides a way by
which one can extract the covariance matrix of any selected quadrature components of two-mode Gaussian state.
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Entangled state is a type of quantum states that can not be
decomposed into pure local states of the subsystems, and in
which the quantum correlations shared by the subsystems are
very stronger than the classical correlations. Entanglement
has a critical role in quantum information process, such as
quantum teleportation [1,2], quantum dense coding [3–5], en-
tanglement swapping [6–9].

Entanglement detection and characterization always has
been a topic of interest for researchers because it is much
helpful for understanding the nature of the quantum states,
increasing the fidelity and optimizing the quantum commu-
nication protocol. The discrete variable states can be de-
scribed in the finite-dimensional Hilbert space, but it is dif-
ficult for the continuous variable (CV) system with infinite
dimensions. However for the CV Gaussian entangled state,
it can be fully characterized by the covariance matrix. The
first experiment of the characterization of the CV entangled

*Corresponding author (email: jzhang74@sxu.edu.cn)

†Contributed by ZHANG Jing (Associate Editor)

state has been performed by Bowen et al. [10] in 2004. In
the experiment, they locked all of the phases. Some other
research groups have performed the measurement according
to the different schemes or setups [11–17], for instance, si-
multaneously scanning the relative phases of the homodyne
detection systems [15], or using a single homodyne detector
[16,17]. Herein we present a measurement of the CV Gaus-
sian two-mode entangled state by two pairs of balanced ho-
modyne detection systems, in one of which the relative phase
of the local beam and the detected beam is locked and the
other is scanned. This scheme can help one to measure the
covariance matrix of any selected quadrature components of
the two-mode state. The two-mode entangled state is gen-
erated through mixing two quadrature squeezed lights from
two degenerate optical parametric amplifiers (DOPA) on a
50/50 beam splitter based on our previous experimental setup
[18–23]. We modulate the injected optical beams of the two
DOPA with two phase modulators respectively. Hence we
can obtain the error signal via the relative phase between the
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local beam and the detected beam and lock the relative phases
[23]. Consequently, we can measure the covariance and cal-
culate the covariance matrix.

1 Covariance matrix of bipartite Gaussian
state

The output state of the OPA is Gaussian approximately if the
Hamiltonian is quadratic [24]. Here we also assume that
the transformation (linear or bilinear Hamiltonian [25,26])
in the experiment is the Gaussian operation. Considering
the N mode Gaussian states ρ, in the canonical coordinate,
R̂ = (X̂1, Ŷ1, . . . , X̂N , ŶN), the characteristic function is given
as

χρ(ξ) = Tr[ρWξ], (1)

where Wξ = exp(iξTR) is the Weyl operator. So the charac-
teristic function is

χρ(ξ) = exp

(
−1

4
ξTσξ + iDTξ

)
, (2)

where σ = σT is the covariance matrix (CM), D is the first
moment. Thus the Gaussian state can be described by the
first and second moment completely. However the first mo-
ment can be adjusted arbitrarily through local unitary trans-
formation, and it also doesn’t affect the entanglement. Hence
we do not consider this herein. Here we just consider the
bipartite entangled state. Correspondingly the canonical co-
ordinate R̂ = (X̂1, Ŷ1, X̂2, Ŷ2), the mode operator â j, j = 1, 2,
and the quadrature operators X̂ j = â j + â†j , Ŷ j =

1
i (â j − â†j).

The covariance matrix are positive real symmetric, and can
be written as:

σ =
( A C

CT B

)
, (3)

where A, B, C are the real 2 × 2 matrix, A and B are the au-
tocorrelation matrices of the single beams. C is the mutual
correlation matrix. The element of the matrix σ is

σmn =
1
2
〈R̂mR̂n + R̂nR̂m〉 − 〈R̂m〉〈R̂n〉

=
1
2
〈δR̂mδR̂n + δR̂nδR̂m〉, (4)

where δR̂ j = R̂ j − 〈R̂ j〉. According to the Heinsenberg in-
equality, the covariance matrix needs to satisfy [24]

σ + iΩ � 0, (5)

where Ω =
2⊕

j=1

ω, ω =
(

0 1
−1 0

)
, Ω is the two-mode sym-

plectic matrix. The covariance matrix can be converted into
the standard form through the local symplectic transforma-
tion [27,28]

S TσS =
(

A′ C′
C′T B′

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a 0 c1 0
0 a 0 c2
c1 0 b 0
0 c2 0 b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (6)

where S = S 1
⊕

S 2, a, b, c1, c2 can be determined by
the four local symplectic invariants I1 = Det(A) = a2,
I2 = Det(B) = b2, I3 = Det(C) = c1c2 and I4 = Det(σ) =
(ab − c2

1)(ab − c2
2). According to eq. (5), we can obtain

I1 + I2 + I3 � 4I4 + 1/4. The eigenvalues of the symplec-
tic matrix eq. (6) are such that

d± =

√
Δ ± √

Δ2 − 4I4

2
, (7)

where Δ = I1 + I2 + 2I3. So the eq. (5) becomes d− � 1/2.

2 Experimental setup

Figure 1 shows the experimental setup. The harmonic light
(532 nm) from the diode-pumped intracavity frequency-
doubled laser (continuous-wave ring Nd:YVO4+KTP)
pumped two optical parametric amplifiers. The fundamen-
tal light (1064 nm) was separated into three parts. One of
which was transmitted through a mode-cleaning cavity and
used as the local field of the balanced homodyne detection.
The others used as the signal fields were injected into the two
OPAs respectively. The relative phases between the pump
fields and the signal fields were adjusted by the reflective
mirrors mounted on the piezoelectric ceramic transducers
(PZTs) before the OPAs. The mode-cleaning cavity and the
OPAs were concentric resonators with the lengths of about
60 mm, whose input and output couplers were concave mir-
rors and had the 30 mm curvature radius. The reflections
of the input couplers of the OPA1 and OPA2 were 99.5%
at 1064 nm, and the intensity transmissions were 70% and
80% at 532 nm, respectively. The output mirrors of the
OPA1 and OPA2 had the power transmissions of 5% and
4% at 1064 nm and the reflections of about 99.5% at 532
nm. The nonlinear media of the optical parametric pro-
cess were the periodically poled KTP crystals whose tem-
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Figure 1 (Color online) Schematic of the experimental setup. OPA: optical
parametric amplifiers below threshold to generate the quadrature squeezed
states; DBS: Dichroic beam splitter; HW: half wave plate; PBS: polarizing
beam splitter; BS: beam splitter; PM: phase modulator; HD1,2: balanced ho-
modyne detection system; PZT: piezoelectric transducer; MC: mode clean-
ing cavity.
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peratures were controlled by the temperature controllers at
36.5◦C and 36.9◦C for the OPA1 and OPA2. The powers of
the signal fields were 15 mW and 10 mW before the OPAs.
The pump fields were 86 mW and 83 mW (the thresholds
of the OPA1 and OPA2 were 173 mW and 176 mW, respec-
tively), which generated the gain of about 4 for the parametric
process when the signal fields were in phase with the pump
lights. The powers of two output fields were about 8 μW.
They were mixed on a 50/50 beam splitter, the fringe visibil-
ity was 97%, and the relative phase was locked at π/2. Thus
the entangled state was generated, that is δ2(Ŷ1+ Ŷ2)→ 0 and
δ2(X̂1 − X̂2)→ 0 under perfect squeezing condition.

3 Experimental results and discussion

The entangled state was measured by two pairs of the bal-
anced homodyne detection systems. The fringe visibilities
of the EPRs and the local fields were 95% and 96%, respec-
tively. Figures 2(a) and (b) are the noise spectra of the sin-
gle EPR beams when the relative phases between the local

fields and the EPRs were scanned. The noise of the quadra-
ture components are different for each EPR beam. The rea-
son is that the output squeezing of the two OPAs are differ-
ent (the intracavity losses, the gains and the transmissions
are different). The maximum and minimum values with π/2
phase difference in the curves b of Figures 2(a) and (b) are
chosen as the quadrature amplitude and phase. Thus the
diagonal elements of the autocorrelation block matrices are
σ11 = δ

2X̂1 = 3.0, σ22 = δ
2Ŷ1 = 2.2, σ33 = δ

2X̂2 = 3.1,
σ44 = δ

2Ŷ2 = 2.1. Because there is no crosstalking between
the quadrature components, the off diagonal elements of the
autocorrelation block matrices are all 0, i.e., σ12 = σ21 =

σ34 = σ43 = 0.
In order to identify and lock the relative phases between

the local fields and the EPR beams, the signal fields pass
through the phase modulators before the two OPAs. The
modulation radio-frequencies (RF) are 3.8 MHz and 3.6
MHz, respectively. The mixed signals of the electronic sig-
nals of the balanced homodyne detectors and the local signals
(the RF modulation signals) are used as the error signals of
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Figure 2 Noise power spectra of the EPR entangled state. The quadrature spectra are measured at the sideband frequency of 5 MHz, RBW 300 kHz, VBW
300 Hz. Panel (a) and (b) show the noise power spectra of each of EPR beams. Red dashed lines are the scanning voltage on the PZTs on the local beams.
Red lines are noise power spectra of the single EPRs. Black lines are the SNL. (c) and (d) the correlated spectra of the EPR beams. Red dashed lines are the
scanning voltage on the PZT on the local beam2. Green line of (c) is noise spectrum in the correlation measurement when the relative phase of the local beam1
and the EPR1 is locked at 0 and the other is scanned. Pink line of (d) is noise spectrum in the correlation measurement when the relative phase of the local
beam1 and the EPR1 is locked at π/2 and the other is scanned.
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the PID locking circuits. The relative phases can be locked
at 0 or π/2 by exchanging the local signals of the mixers.
Figures 2(c) and (d) show the measurement when the rela-
tive phases between the local beam1 and the EPR1 is locked
at 0 or π/2 and the other is scanned. Consequently we can
measure δ2(X̂1 ± X̂2) from points 1 and 3 and δ2(Ŷ1 ± Ŷ2)
from points II and IV. The noise spectrum of the sum of
the quadrature phases is lower 1.3 dB than the SNL, i.e.,
δ2(Ŷ1 + Ŷ2) = 0.74. The noise spectrum of the difference
of the quadrature amplitudes is lower 1.1 dB than the quan-
tum shot noise limit, i.e., δ2(X̂1 − X̂2) = 0.78. The corre-
sponding canonical conjugate quantities are δ2(Ŷ1−Ŷ2) = 8.7,
δ2(X̂1 + X̂2) = 11.6. Expanding the covariance

δ2(X̂1 ± X̂2) = δ2X̂1 + Δ
2X̂2 ± 2σ13(31),

δ2(Ŷ1 ± Ŷ2) = δ2Ŷ1 + δ
2Ŷ2 ± 2σ24(42), (8)

we can get the diagonal elements of the mutual correlation
matrix. The off-diagonal terms of the mutual correlation ma-
trix can be extracted according to the points 2 and 4 in Fig-
ure 2(c) and the points I and III in Figure 2(d), which are
δ2(X̂1 − Ŷ2) = 5.5, δ2(X̂1 + Ŷ2) = 5.0, δ2(Ŷ1 − X̂2) = 5.7
and δ2(Ŷ1 + X̂2) = 5.6. Thus the off-diagonal terms can be
calculated according to the formulas as thus

δ2(X̂1 ± Ŷ2) = δ2X̂1 + Δ
2Ŷ2 ± 2σ14(41),

δ2(Ŷ1 ± X̂2) = δ2Ŷ1 + δ
2X̂2 ± 2σ23(32). (9)

Then the covariance matrix of the EPR beams can be given
as:

σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
3.0 0 2.7 0
0 2.2 −0.1 −1.8

2.7 −0.1 3.1 0
0 −1.8 0 2.1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (10)

Although the values of the covariance matrix are close with
our expectation, the error still exist because of the phase drift
of the relative phase of the local beam2 and EPR2 in the bal-
anced homodyne detection system2 during the measurement.

This measurement also provides a method which can help
us to extract the covariance matrix of any quadrature com-
ponents. In Figures 2(c) and (d), we fix the the relative
phase of the local beam 1 and the EPR1 at 0 (Figure 2(c))
and π/2 (Figure 2(d)) respectively, and scan the the rela-
tive phase of the local beam 2 and the EPR2. Here, the
selected quadrature components of the EPR1 are the same
as the above discussion with δX̂′1 = δX̂1 and δŶ′1 = δŶ1,
and the quadrature components for the EPR2 are arbitrary.
They can be defined as δX̂′2 = δX̂2 cos(θ2) + δŶ2 sin(θ2) and
δŶ′2 = δX̂2 cos(θ2 + π/2) + δŶ2 sin(θ2 + π/2), this is, the
canonical coordinate in the measurement is rotated, which
corresponds to an unitary transformation. Here we chose
θ2 = 55.4◦ and extract the CM. The terms of the autocor-
relation matrix A are given as discussed above. The diagonal
terms of the autocorrelation matrix of EPR2 can be easily
obtained according to Figure 2(b) (the blue triangle points),
σ′33 = δ

2X̂′2 = 2.6, σ′44 = δ
2Ŷ′2 = 2.9. However the off-

diagonal elements of the autocorrelation matrix B are not 0,

and which can not be measured directly because of the un-
certainty relation. However these terms can be calculated ac-
cording to the relationship

σ′34 = σ
′
43 = δX̂

′
2δŶ

′
2 = [δX̂2 cos(θ2) + δŶ2 sin(θ2)]

×
[
δX̂2 cos

(
θ2 +

π

2

)
+ δŶ2 sin

(
θ2 +

π

2

)]
= 0.1. (11)

The diagonal elements of the mutual matrix can be extracted
from the points 1′ and 3′ in Figure 2(c) and the points II′
and IV′ in Figure 2(d). Then we obtain σ′13,31 = 1.4 and
σ′24,42 = −1.4. Here the off-diagonal terms of the mutual ma-
trix are not 0 because of the correlations of the quadrature
components, but which can be determined according to the
points 2′ and 4′ in Figure 2(c) and points I′ and III′ in Figure
2(d). Similarly, we obtain σ′14,41 = −2.4 and σ′23,32 = −1.4.
So the CM of the selected quadrature components is

σ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
3.0 0 1.4 −2.4
0 2.2 −1.4 −1.4

1.4 −1.4 2.6 0.1
−2.4 −1.4 0.1 2.9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (12)

On the other hand, the CM in eq. (12) can be obtained
from CM in eq. (10) by the unitary transformation. In the
phase space, the unitary transformation can be defined as:

S †RS = MR + D′, (13)

where S is the unitary operator, D′ is the rotated first moment,
and M is the corresponding symplectic matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cos(θ1) sin(θ1) 0 0
− sin(θ1) cos(θ1) 0 0

0 0 cos(θ2) sin(θ2)
0 0 − sin(θ2) cos(θ2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (14)

where θ1 = 0 and θ2 = 55.4◦. Consequently, the characteris-
tic function of the state in the new canonical coordinate is

Tr[S †ρS W(ξ)] = Tr[ρexp[iξTS †RS ]]

= exp

[
−1

4
ξTσ′ξ + iξTD̃

]
, (15)

where σ′ = MσMT, D̃ = MD + D′. Thus we can calculate
the CM directly from eq. (10) according to the symplectic
transformation

σ′T = MσMT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
3.0 0 1.5 −2.2
0 2.2 −1.5 −1.0

1.5 −1.5 2.4 −0.5
−2.2 −1.0 −0.5 2.8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (16)

Comparing CM in eq. (16) with that in eq. (12), σ′ and σ′T
are close with our expectation.

The relative phase of the local beam and the detected beam
in homodyne detection system 1 is locked at 0 or π/2 in the
experiment. In reality, the relative phase can be locked at
any angle value because the offset of the PID circuit can be
adjusted in a certain range and the local signal of the mixer
of the relative phase locking system can also be exchanged.
Hence the covariance matrix of any selected quadrature com-
ponents can be extracted according to this scheme.
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4 Conclusion

Herein we experimentally generate two-mode CV entangled
state, and measure the covariance matrix of the entangled
state by using two balanced homodyne detection systems.
The relative phase of the local beams and the detected beams
can be locked through the optical phase modulation tech-
nique. The detection system in this work can be used to mea-
sure the covariance matrix of the arbitrary selected quadra-
ture components of the two EPRs. This work will help us
obtain all information of two-mode entangled states for op-
timizing the quantum communication in the future experi-
ments. Herein we did not report non-Gaussian character of
generating EPR entangled state. Detecting and Quantifying
non-Gaussianity [29] will be investigated in detail in the fu-
ture.
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