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Quantum effects in hybrid atomic optomechanics in a sys-
tem comprising a cloud of atoms and a mobile mirror me-
diated by a single-mode cavity are studied. Tripartite non-
locality is observed in the atom-light-mirror system, as
demonstrated by the violation of the Mermin-Klyshko
(MK) inequality. It has been shown [C. Genes, et al., PRA 77,
050307 (R) (2008)] that tripartite entanglement is optimized
when the cavity is resonant with the anti-Stokes sideband
of the driving laser and the atomic frequency matches the
Stokes one. However, we show that this is not the case for
the nonlocality. The MK function achieves minima when the
atoms are resonant with both the Stokes and anti-Stokes
sidebands, and unexpectedly, we find violation of the MK
inequality only in a parameter region where entanglement
is far from being maximum. A negative relation exists be-
tween nonlocality and entanglement with consideration of
the possibility of bipartite nonlocality in the violation of the
MK inequality. We also study the non-classicality of the mir-
ror by post-selected measurements, e.g. Geiger-like detec-
tion, on the cavity and/or the atoms. We show that with fea-
sible parameters Geiger-like detection on the atoms can ef-
fectively induce mechanical non-classicality.

The lack of observation of quantum effects at the macro-
scopic scale reinforces the conjecture that macroscopic
objects are governed by classical physics, while the
microscopic world is ruled by quantum mechanics.
However, quantum mechanics intrinsically shows no
limitation to describe large-scale/massive systems [1].
Preparing macroscopic quantum states is of vital impor-
tance for understanding fundamental issues in quantum
mechanics, such as decoherence and the quantum-
to-classical transition [2], collapse models of the wave
function [3], and so on. Optomechanics, addressing the
coupling of optical and mechanical degrees of freedom
via radiation pressure [4], provides an ideal platform to

generate and control quantum mesoscopic/
macroscopic states of mechanical systems thanks to
its intrinsic nonlinear light-matter interactions.

Over the past few years, successful advances in nano-
and micro-mechanical engineering, in particular me-
chanical oscillators cooled into (or close to) their ground
state [5, 6], have made it possible to prepare mechan-
ical quantum states. Preparing quantum states either
for the light mode or the mechanical oscillator is a
fascinating (though challenging) goal in the field of
optomechanics [7, 8]. Nonclassical mechanical states
can be generated by the optomechanical nonlinearity in-
trinsic in the strong coupling regime [9, 10], by inject-
ing squeezed light into the cavity (the squeezing is thus
transferred from light to the mechanical degree of free-
dom) [11, 12], by post-selected measurements on the op-
tical field [13, 14], and so on.

Recently, it has been reported that hybrid atom-
assisted optomechanics shows advantages in many
aspects [15]. To name but a few, atoms induce an
additional nonlinear effect, which enhances the optome-
chanical interaction and, moreover, results in a squeezed
state of the mechanical mode [16]; atoms boost the cool-
ing of the mechanical motion [17] and can be utilized
to prepare non-Gaussian mechanical states [18]; and
the strong coupling between an atom/atoms and a me-
chanical oscillator allows to realize quantum control of
the oscillator via manipulating the atom/atoms [19]. It
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has also been shown that a genuine tripartite entangled
stationary state of an atom-cavity-mirror system can be
produced [20, 21]. Very recently, nonlocality of an atom
and a mechanical oscillator mediated by a single-mode
cavity has been studied [22].

Being incompatible with local realism, nonlocality is
demonstrated by the violation of Bell inequalities [23],
and witnesses a type of quantum correlations that is
distinct from entanglement and discord. It has been
proven that a pure bipartite/tripartite entangled state is
nonlocal [24]. However, in general, nonlocality and en-
tanglement are different properties: a system in an
entangled mixed state does not necessarily possess non-
local correlations [25]. The relationship between both
is much more subtle for mixed states and far from be-
ing clear especially in multipartite cases [26]. It is thus
of fundamental importance to explore their relation-
ship in such states, practicably starting from a specific
case, which is the main theme of this paper. Multipar-
tite nonlocality has been investigated in continuous vari-
able (CV) systems [27]. In such cases, it is usually demon-
strated by the violation of Bell-like inequalities in phase
space due to the systems’ infinite-dimensional Hilbert
spaces [28].

In this paper, we investigate tripartite nonlocality
and entanglement in a hybrid optomechanical system
composed of an atomic ensemble placed within an op-
tomechanical cavity. The system is subject to noise and
dissipation, and its state is in general highly mixed. It
therefore represents an ideal platform for exploring the
relationship between nonlocality and entanglement in
mixed states. It has been reported [20] that robust gen-
uine tripartite entanglement can be generated using ex-
perimentally feasible parameters under the following
conditions: (i) the cavity is resonant with the anti-Stokes
sideband of the driving laser (i.e. the mechanical cool-
ing regime); (ii) the atomic frequency matches the Stokes
sideband; (iii) the effective optomechanical/atom-light
coupling is large compared to cavity/atomic decay. Un-
der these conditions, however, we show that the value of
Mermin-Klyshko (MK) function [29] (from which the MK
inequality is constructed whose violation denotes tripar-
tite nonlocality) shows a negative relation with the en-
tanglement for a wide range of the cavity decay: the MK
value decreases for increasing entanglement. By relaxing
the optomechanical/atom-light coupling thus diminish-
ing the entanglement, we observed a violation of the MK
inequality demonstrating nonlocal correlations shared
among the atom-light-mirror system. Furthermore, we
also show that the MK function achieves minima when
the atoms are resonant with both the Stokes and anti-

Stokes sidebands of the laser, while the former is the
condition under which the tripartite entanglement is
maximized.

Another theme of this paper is to explore the impact
of the atomic ensemble on the non-classicality of the me-
chanical mode. We show that by post-selected measure-
ments, e.g. Geiger-like detection, on the atomic state, a
negative Wigner function of the mirror is observed wit-
nessing the quantum nature of its motional state. Larger
coupling strength of the system leads to a more nonclas-
sical mechanical state.

1 The system

We consider a pump laser at frequency ωl driving a
Fabry-Perot cavity with a light vibrating end mirror of
mass m and mechanical frequency ωm. An ensemble of
N two-level atoms with natural frequency ωa is placed in-
side the cavity. In a unitary picture, without considering
any dissipation and decoherence, the Hamiltonian of the
system is

H = �ωcc†c + �

2
ωaSz + �

2
ωm(q2 + p2)

− �χc†cq + �g (S+c + S−c†) + i�ε
(
c†e−iωl t − ceiωl t),

(1)

where ωc is the cavity frequency, and c (c†) the cor-
responding optical annihilation (creation) operators. q
and p are the dimensionless mechanical mode position-
like and momentum-like operators, and S± are the
collective spin operators of the ensemble of atoms
defined as S±,z = ∑

i σ
±,z
i (i = 1, 2, . . . , N) with Pauli ma-

trices σ± and σ z, which satisfy the commutation re-
lations [S+, S−] = Sz and [Sz, S±] = ±2S±. χ and g are
the optomechanical and atom-cavity coupling given by
χ = (ωc/L)

√
�/mωm with L the cavity length, and g =

d
√

ωc/2�ε0V with d the dipole moment of the atomic
transition, ε0 the vacuum permittivity and V the vol-
ume of the cavity mode. ε is the coupling between
the driving laser and the cavity field, which is re-
lated to the pump power P and the cavity decay κ by
ε = √

2Pκ/�ωl .
The dynamics of this tripartite system is in principle

complicated. For simplifying the calculation, we adopt
the treatment employed in Ref. [20], by assuming the low
atomic excitation limit, i.e. atoms are initially set in the
ground state, and the excitation probability of a single
atom is small. In such a case, the dynamics of the atomic
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polarization can be described by the bosonic annihila-
tion operator a = S−/

√|〈Sz〉| and its Hermitian conjugate
a†, which satisfy the commutation relation [a, a†] = 1. In
a rotating frame at the pump frequency ωl , the dynam-
ics of such a system can then be described by a set of
quantum Langevin equations as

q̇ = ωm p,

ṗ = −ωmq − γm p + χc†c + ξ,
(2)

ċ = −(κ + i
c)c + iχcq − ig Na + ε +
√

2κcin,

ȧ = −(γa + i
a)a − ig Nc +
√

2γaain,

where γm (γa) is the decay rate of the mechanical os-
cillator (atoms), and 
c = ωc − ωl (
a = ωa − ωl) is the
cavity (atomic) detuning with respect to the laser. g N =√

Ng is the coupling between the cavity and the collec-
tive atomic mode. {ξ, cin, ain} are the noise operators of
the system affecting the mirror, optical and atomic field,
respectively. The Langevin force operator ξ , which ac-
counts for the Brownian motion of the mirror, is auto-
correlated as [30]

〈ξ (t)ξ (t′)〉 = γm

2πωm

∫
ωe−iω(t−t′)

[
coth

(
�ω

2kB T

)
+ 1

]
dω,

(3)

with kB the Boltzmann constant, T the temperature of
the phononic environment. For a large mechanical qual-
ity factor, the above correlation function reduces to a δ

function [31]. When the cavity and atomic modes are
prepared in coherent states, the only nonzero correla-
tions of cin and ain are 〈cin(t)c†in(t′)〉 = 〈ain(t)a†

in(t′)〉 = δ(t −
t′) [32].

In what follows, to enhance the optomechanical
coupling, we assume the cavity is strongly pumped,
i.e. |αs | � 1, where αs is the amplitude of the steady-
state cavity field, which can be acquired by solving the
nonlinear equation αs[κ + i
c − iχ2|αs |2/ωm + g 2

N/(γa +
i
a)] = ε. In that case, one can then approximate the
quadrature operators of the system O = (q, p, X, Y, x, y)
as Oi 	 〈Oi〉 + δOi , with 〈Oi〉 the ‘large’ mean value
of each operator and δOi the corresponding ‘small’
fluctuation, where we introduced X = (c† + c)/

√
2, Y =

i(c† − c)/
√

2, and x = (a† + a)/
√

2, y = i(a† − a)/
√

2 the
position- and momentum-like operators of the optical
and atomic modes, respectively. In such a way, the dy-
namics of the system takes a linear form that simplifies
the cumbersome calculation. The resulting dynamics of
the fluctuation operators δO = (δq, δp, δX, δY, δx, δy) is

described by a set of Langevin equations

δq̇ = ωmδp,

δ ṗ = −ωmδq − γmδp + χef f δX + ξ,

δ Ẋ = −κδX + 
̃cδY + g Nδy +
√

2κ Xin,
(4)

δẎ = −κδY − 
̃cδX + χef f δq − g Nδx +
√

2κYin,

δẋ = −γaδx + 
aδy + g NδY +
√

2γaxin,

δ ẏ = −γaδy − 
aδx − g NδX +
√

2γa yin,

with the effective optomechanical coupling χef f =√
2χαs (without losing generality, we have taken αs as

real), the effective cavity detuning 
̃c = 
c − χ2
ef f /2ωm,

and noise operators Xin = (c†in + cin)/
√

2, Yin = i(c†in −
cin)/

√
2, and xin = (a†

in + ain)/
√

2, yin = i(a†
in − ain)/

√
2.

Equations (5) can be solved directly in the frequency do-
main by taking the Fourier transform of each equation
above. The correlation function of any pair of fluctuation
operators is then acquired as

Vi j = 1
4π2

∫∫
dωd�e−i(ω+�)t Vi j (ω,�), (5)

where Vi j (ω,�) = 〈{vi(ω), vj (�)}〉/2 (i, j = 1, . . . , 6) is the
correlation function between elements i and j of
v(ω) = (δq(ω), δp(ω), δX(ω), δY (ω), δx(ω), δy(ω)). All the
elements of Vi j (ω,�) constitute a 6 × 6 covariance matrix
(CM) of the system in the frequency domain. Vi j (ω,�)
contains a delta function δ(ω + �), which leads to the
disappearance of e−i(ω+�)t in Eq. (5) after the integrations.
As this δ function is a consequence of the stationarity
of the noises [33], the resulting time-independent CM
σ with elements defined in Eq. (5) describes the steady
state of the system. Our hybrid optomechanical system
is fully determined by the CM σ . Being a physical state,
this CM should satisfy the Heisenberg-Robertson uncer-
tainty principle σ + i�3/2 ≥ 0 [34] with �3 = ⊕3

j=1iσy the
so-called symplectic matrix and σy the y-Pauli matrix.
Note that, owing to the linearization of the dynamics and
the fact that all noises are Gaussian, the dynamical map
of the system preserves the Gaussian nature of any input
state.

2 Tripartite nonlocality versus tripartite
entanglement

In this Section, we devote ourselves to studying non-
local properties of our hybrid tripartite system and,
moreover, exploring the relationship between nonlocal-
ity and entanglement, which are two central concepts
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in quantum physics. Up to now, their relationship is far
from being answered especially in multipartite mixed
states [26]. It should be pointed out that the definition
of tripartite/multipartite nonlocality is still not clear and
unified [26, 35]. Usually, it is defined as genuine (or
three-way) tripartite/multipartite nonlocality denoted
by the violation of Svetlichny inequality (SI) [36]. How-
ever, there exists tripartite nonlocality (here we mean
nonlocality involving all three parties) that does not vi-
olate SI, i.e., is not necessarily genuine: for example, in a
three-particle system, particle 1 is nonlocally correlated
with the other two, while particles 2 and 3 are locally cor-
related. In such a case, nonlocal correlations could be
signalled by the violation of other weaker Bell-like in-
equalities, e.g. the MK inequality. The ‘drawback’ of the
MK is that its violation admits states with only two-
particle nonlocal correlations present [37]. It is in princi-
ple impossible to distinguish tripartite nonlocality from
bipartite ones in the violation of MK inequality. In what
follows, we will focus on testing the MK inequality in our
highly mixed three-mode Gaussian state in view of the
failure of violating the SI in such a state. It should be
pointed out that the violation of SI is rather demand-
ing, with genuinely multipartite entangled states of the
W form achieving values of the Svetlichny function only
slightly larger than 4 [37], and for Gaussian states, vio-
lation of the SI seems impossible when the purity falls
below 0.86 [38].

Given the CM of the system, one can write its char-
acteristic function ζ (O) = exp(−Oσ OT) [39]. The Wigner
function is defined as the Fourier transform of ζ (O). For
our zero-mean three-mode Gausssian state, the Wigner
function is given by

Wσ (O) = exp(−Oσ−1 OT)

π3
√

det[σ ]
, (6)

where O denotes the phase-space variables associated
with the fluctuation operators δO. Nonlocality of CV
systems can be tested in the phase space by adopt-
ing the displaced parity operator �(λ) = D(λ) � D†(λ)
to be measured on each mode [40], with the Weyl dis-
placement operator D(λ) = exp(λb† − λ∗b) (λ ∈ C) and
the parity operator

� = (−1)n =
∞∑

n=0

(|2n〉 〈2n| − |2n + 1〉 〈2n + 1|), (7)

where n = b†b is the bosonic number operator and |n〉
the n-excitation Fock state. The key of such a phase-
space approach is that the mean value of the displaced
parity operator is connected to the Wigner function,

i.e. 〈�(λ)〉 = (π/2)W(λ) [40]. Consequently, for our three-
mode Gaussian system, the MK function can be rewritten
in the phase space as

M3 = π3

8
[Wσ (O′

1, O2, O3) + Wσ (O1, O′
2, O3)

+ Wσ (O1, O2, O′
3) − Wσ (O′

1, O′
2, O′

3)], (8)

where O1 = {q, p}, O2 = {X, Y} and O3 = {x, y} that fully
describe the mirror, cavity, and atoms subsystems, re-
spectively, and O′

i embodies different values of the same
quadrature operators of Oi . Any local realistic theory
imposes the bound |M3| ≤ 2. Bipartite and/or tripartite
nonlocal correlations among the system result in a viola-
tion of the MK inequality, i.e., |M3| > 2. In the following,
we define Mmax as the maximum of M3 optimized over
the full range of {q, p, X, Y, x, y, q′, p′, X ′, Y ′, x′, y′}.

In order to study the relation between nonlocality and
entanglement in our mixed three-mode system, we in-
troduce the genuine tripartite entanglement, which can
be quantified by tripartite negativity [41], defined as

E3 = (E1|23 E2|13 E3|12)1/3, (9)

where Ei| jk is the one-vs-two-mode entanglement be-
tween mode i and modes j + k (i, j, k = 1, 2, 3). When
Ei| jk > 0 (∀i, j, k = 1, 2, 3), i.e. all one-vs-two-mode bi-
partitions in the system are inseparable, the tripartite
negativity E3 > 0 implies the existence of genuine tri-
partite entanglement shared within the system [42]. To
quantify Ei| jk, we employ the logarithmic negativity [43],
which is calculated as Ei| jk = max[0,− ln 2ν̃−], with ν̃− =
min eig|i�3(Pi| jkσ Pi| jk)|, where Pi| jk is the matrix that in-
verts the sign of momentum of mode i. Similarly, one can
obtain all the bipartite entanglement Ei j (i, j = 1, 2, 3).

The numerical results of the tripartite entanglement
and nonlocality are shown in Fig. 1, in which we em-
ployed the following parameters [6, 44]: the mass of the
mirror m = 10 ng, with ωm/2π = 107 Hz, γm/2π = 100
Hz, and phononic temperature T = 0.1 mK; pump power
P = 35 mW at λl = 1064 nm, and cavity length L = 1
mm in Fig. 1(a), and L = 5 mm in (b) and (c). In the
following, we set equal optomechanical and atoms-light
coupling, χef f = g N [45] (the strength of g N can be ad-
justed by changing the number of atoms), and equal
cavity and atomic decay, κ = γa. The tripartite entangle-
ment can only be present within a high-finesse cavity,
and a large χef f (g N) compared to decay κ (γa). This could
be achieved with L = 1 mm and large finesse F > 104.
The entanglement is optimized for 
̃c = ωm and 
a =
−ωm [20], i.e. the cavity is resonant with the anti-Stokes
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Figure 1 (a) Tripartite entanglement E3 and MK function Mmax versus cavity decay κ . Inset shows the steady-state coupling χef f as a
function of κ . Detuning is optimized for E3: 
̃c = ωm and 
a = −ωm. Cavity length is taken as L = 1 mm. (b) Tripartite nonlocality
demonstrated by the violation of the MK inequality (inset for the entanglement E3) versus cavity decay κ . Parameters are taken same
values as in (a) but for a larger cavity L = 5 mm. (c) Tripartite entanglement E3 (red) and MK function Mmax (blue) versus atomic
detuning 
a. The same conditions as in (b) but for two cases of cavity decay κ/2π = 106 Hz (solid), κ/2π = 5 × 105 Hz (dashed).
E3 takes a maximum at 
a = −ωm, while Mmax achieves minima when 
a = ±ωm. (d) Bipartite entanglement Ei j (blue) and Ei| jk

(green) as a function of κ : E12, E1|23 (solid); E23, E2|13 (dashed); E13, E3|12 (dotted). The same conditions as in (b).

sideband of the laser, while the atoms are resonant with
the Stokes sideband.

In Fig. 1(a), we plot Mmax and E3 for a wide range of
cavity decay κ under the above conditions. As shown,
a considerable degree of E3 emerges, and, moreover,
E3 is robust against the temperature surviving up to
T = 15 K for cavity finesse F = 3 × 104. As κ becomes
larger, the steady-state coupling χef f increases remark-
ably (see the inset) resulting in a rising E3 till to a satu-
rated value. Surprisingly, Mmax declines as E3 increases.
For the whole range of κ, we have not witnessed any
violation of the MK inequality. Given the negative re-
lation between Mmax and E3, one would expect to see
Mmax > 2 under conditions where E3 is smaller. In what
follows, we will show this is indeed the case. By relax-
ing the coupling χef f , realized by increasing the cavity
length to L=5 mm, we observed a weak violation of the
MK inequality when κ takes small values (smaller κ will
not satisfy the conditon for CM σ being physical), as
shown in Fig. 1(b). In such a case, E3 can only achieve
its maximum around 0.05 due to a much weaker χef f

[about 0.17 χef f of getting maximum E3 for L = 1 mm
in Fig. 1(a)]. Unlike the robustness of entanglement to-
wards the temperature, the nonlocality is quite fragile:
Mmax drops below 2 when T rises up to 1 mK. Such a
feature has also been observed in the tripartite nonlocal-
ity of the vibrational modes of trapped ions [46]. From
an experimental perspective, we see that T ∼ 0.1 mK
can not be reached with standard dilution refrigerators
(which typically reaches 10 mK and hardly below). How-
ever such temperatures could be reached by employ-
ing advanced techniques such as adiabatic nuclear de-
magnetization refrigerators [47]. Alternatively, one could
think of using GHz oscillators, for which the nonlocal-
ity properties discussed here would be visible at higher
temperatures.

This negative relation between nonlocality and en-
tanglement is confirmed by Fig. 1(c) that shows E3 and
Mmax as a function of atomic detuning 
a, for L=5 mm,

̃c = ωm, and two working points of κ. Unambiguously,
E3 reaches a peak as 
a = −ωm, while Mmax gets two
minima when 
a = ±ωm. Since Mmax is not sensitive to

a when κ is small, in Fig. 1(b) we used 
a = −ωm. Evi-
dently, as 
a takes values away from ±ωm, a slight rise of
Mmax would occur.

Since the violation of MK inequality admits bipartite
nonlocal correlations [37], we now prove the negative re-
lation still holds even in this situation. Above all, it is
necessary to specify unambiguously the positive relation
between nonlocality and entanglement. Despite specific
states studied, measures of the entanglement and Bell
inequalities adopted, the positive relation contains two
apparent meanings (not necessarily complete): (i) as the
entanglement increases/decreases, the nonlocality also
increases/decreases, and vice versa; (ii) for a multipartite
nonlocal state with two of the bipartition entanglement
E 1

A|B > E 2
A|B (where A and B are subsystems regardless of

the number of particles/modes comprised in both), E 1
A|B

is more likely than E 2
A|B to violate the Bell inequality, or

contributes more to the violation. Now suppose the posi-
tive relation is valid in our case, then the decreasing MK
function might result from one or more declining bipar-
tite entanglement Ei j and/or Ei| jk, though the tripartite
entanglement E3 is increasing. To ascertain this, we show
in Fig. 1(d) all bipartite entanglement Ei j and Ei| jk at the
range of κ when Mmax > 2 in Fig. 1(b). It shows that only
atoms-light entanglement E23 is slightly decreasing as κ

grows. According to (i), only E23 could lead to the de-
creasing Mmax, and then in view of (ii), E23 should be
larger than any other entanglement plotted in Fig. 1(d).
This is clearly against the fact that E23 is the minimal en-
tanglement and has the least possibility to get the MK
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inequality violated. Therefore, the previous assumption
does not hold and thus the nonlocality and entangle-
ment show a negative relation even if bipartite nonlocal-
ity is present in the violation of the MK inequality. The
breaking of the positive relation (i) has been reported in
Refs. [48, 49].

From the above analyses, we remark that the emer-
gence of both tripartite entanglement and nonlocality
within the system requires a high-finesse cavity, a high
mechanical Q factor, strong coupling χef f (g N) with rel-
atively low decay κ (γa), and the cavity is resonant with
the anti-Stokes sideband. Differently, the appearance of
entanglement mainly depends on the coupling strength,
while nonlocality is mainly sensitive to the value of the
decay rate, as illustrated in Fig. 1(b), Mmax > 2 can only
exist at extra-low cavity and atomic decay. This incon-
sistency could be the physical reason that leads to the
negative relation between both. It should be pointed
out that it is in principle hard to give a general conclu-
sion on the relationship between both in view of various
measures or Bell inequalities for the nonlocality, espe-
cially for multipartite cases which display a more com-
plex structure than the bipartite cases [26]. Conclusions
may vary significantly and even become completely op-
posite depending on what kind of measures one adopts,
specific states one studies, and whether the system is in a
pure or mixed state. To be specific, by adopting different
measures, Vallone et al. [49] find entanglement and non-
locality are inversely related for pure two-qubit/qutrit
states. On the contrary, Adesso et al. [38] show a good
agreement between both for pure three-mode Gaussian
states. Nevertheless, in our mixed three-mode Gaussian
states a negative relation is observed. The relationship
between both has been rarely explored in multipartite
mixed states [26]. Our work, to the best of our knowledge,
for the first time provides a concrete demonstration of
the negative relation between both in such states.

3 Non-classicality of the mirror

Having observed the tripartite quantum nonlocality and
entanglement in the system, we now turn to the study
of quantum effects in its subsystems. We focus on the
non-classicality of the motional state of the mechani-
cal system, owing to its significance in the fundamen-
tal research in quantum physics [2, 3]. In what follows,
non-classicality is indicated by regions where the Wigner
function attains negative values [50]. Due to the lin-
earization of the dynamics and the Gaussian nature of
the input states and the noises, the state of the system
is Gaussian at all times, and thus it will not be possible to

observe non-classicality simply by tracing out the atomic
and cavity subsystems from the joint state. As shown in
Ref. [13], conditional non-Gaussian measurements, e.g.
Geiger-like detection, on the cavity may induce a nega-
tive Wigner function of the mechanical state. We show in
the following that this is also the case for measurements
on the atomic mode.

We acquired the characteristic function of the system
ζ (O) previously. After the replacements q = Re[α], p =
Im[α]; X = Re[β], Y = Im[β]; and x = Re[γ ], y = Im[γ ]
with amplitude {α, β, γ } ∈ C, the characteristic function
is rewritten as ζ (α, β, γ ). This gives us access to the den-
sity matrix of the system [51]:

ρmca = 1
π3

∫∫
d2

α d2
β d2

γ ζ (α, β, γ )

× Dm(−α)Dc(−β)Da(−γ ), (10)

where Dj (μ) is the Weyl operator of mode
j = m, c, a [52]. Now we implement Geiger-like de-
tection on the cavity and/or the atomic mode. The latter
can be carried out by using the quantum jump detection
scheme described in Ref. [53] and employed, e.g., in
Ref. [54]. This gives rise to the following density matrix
for the conditional mechanical state:

ρG
m = Trc,a

[
�G ρmca

]
/Trm,c,a

[
�G ρmca

]
, (11)

where operator �G = ∑∞
s=1 |s〉〈s| denotes Geiger-

like detection on the cavity/atomic mode (�G =∑∞
n,m=1 |n〉〈n||m〉〈m| for simultaneous detecion on

both the subsystems), and the denominator is a normal-
ization constant.

In Fig. 2, we present the Wigner distribution of the
mirror with Geiger-like detection performed on the sys-
tem. It has been demonstrated [13] that non-classicality
of the mirror can be induced by Geiger-like detection
on the cavity field. Based on the parameters adopted in
our system, however, we did not find the negativity of
the Wigner function when performing measurements on
the cavity. On the contrary, detection on the atoms in-
duces effectively a negative Wigner function [cf. Figs. 2(a)
and (b)]. This is probably because, under the parameters,
the atoms-mirror coupling or entanglement via the cav-
ity field is stronger than the mirror-light’s though there
is no direct interaction between them [20]. For mea-
surements simultaneously performed on both the cav-
ity and the atomic mode, the negativity induced by the
detection on the atoms vanishes due to the combined
effects caused by the detection on the cavity, as shown
in Fig. 2(c). The non-classicality is robust against the
temperature and the mechanical damping rate [13]: the
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Figure 2 Wigner function of the mirror with Geiger-like detection (a) on the cavity; (b) on the atomic state; (c) on both the cavity and
atoms. The parameters of the system take the same values as in Fig. 1(a) and for κ/2π = 2.5 × 106 Hz (corresponding to finesse F =
3 × 104).

Figure 3 Mechanical non-classicality Nw versus effective couping
χef f with Geiger-like detection on the atomic state. The parame-
ters take the same values as in Fig. 1(a).

negativity of Wigner function still survives as the temper-
ature/damping rate increases by three orders of magni-
tude based on the parameters used in Fig. 2(b).

Finally, we show that this measurement-induced
non-classicality of the mechanical state is tightly con-
nected with the coupling strength of the system: larger
coupling leads to a more nonclassical conditional state,
as shown in Fig. 3. We have adopted quantityNw to quan-
tify the non-classicality of the state, which is defined
as [50, 55]

Nw = −
∫

�

Wm(α)d2
α, (12)

where Wm(α) is the Wigner function of the mirror and � is
the negative regions of the Wigner distribution in phase
space.

4 Conclusions

We have studied quantum effects in a hybrid op-
tomechanical system by looking at both the tripartite
nonlocality and the non-classicality of the mechanical
system. The MK inequality is violated demonstrating

nonlocal correlations shared among the system. Coun-
terintuitively, the nonlocality shows a negative relation
with the tripartite entanglement, in that nonlocality de-
clines as entanglement increases. The negative relation
still holds even if bipartite nonlocality is present in the
violation of the MK inequality. Our work provides a
concrete demonstration in multipartite mixed states of
the negative relation between nonlocality and entangle-
ment, and therefore strengthens the link between these
two fundamental concepts in quantum physics.

We also studied non-classicality of the motional state
of the vibrating mirror. By implementing post-selected
measurements, e.g. Geiger-like detection, on the col-
lective atomic mode, a nonclassical mechanical state
is generated indicated by the appearance of a negative
Wigner function. By enhancing the coupling strength of
the system, the mechanical non-classicality increases re-
markably. This work predicts the possibility for the ex-
perimental realization of nonlocal correlations among
atoms, light and a mesoscopic mirror and also con-
tributes to the ongoing attempts of preparing meso-
scopic/macroscopic quantum states.
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