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The distribution of a modulated squeezed state over a quantum channel is the basis for quantum key distribution
(QKD) with a squeezed state. In this Letter, a modulated squeezed state is distributed over a lossy channel. The
Wigner function of the distributed state is measured to observe the evolution of the quantum state over a lossy
channel, which shows that the squeezing level and the displacement amplitude of the quantum state are
decreased along with the increase of the channel loss. We also measure the squeezing level in the frequency
domain by the frequency shift technique. The squeezing of the modulated squeezed state at the modulation
frequency is observed in this way. The presented results supply a reference for a QKD with a squeezed state.
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Quantum key distribution (QKD) allows two legitimate
parties, Alice and Bob, who are linked by a quantum chan-
nel and an authenticated classical channel, to establish a
secret key only known to themselves. Continuous variable
(CV) QKD using a Gaussian quantum resource state, such
as the entangled state, squeezed state, or coherent state, as
the resource state, along with reconciliation and a privacy
amplification procedure, can distill the secret key[1].
Recently, quantum discord has also been applied to com-
plete QKD[2,3]. CV QKDs exploiting the coherent state[4–10]

and the entangled state[11–13] have been experimentally
realized in recent years.
In the proposed QKD scheme with the squeezed

state[14–18], squeezed states that are randomly displaced
along the squeezed quadrature, which is obtained by
modulating the squeezed states, are transmitted from
Alice to Bob. Bob performs homodyne or heterodyne de-
tection on the received quantum state. Then, Alice and
Bob use the classical data process, such as post-selection,
reconciliation (reverse reconciliation), and privacy ampli-
fication, to distill the secret key[1]. Loss and excess noise in
the quantum channel are two parameters that limit the
secret key rate and transmission distance of the CV
QKD scheme. It has been shown that QKD based on
the squeezed state and heterodyne detection can tolerate
more excess noise than a QKD scheme with the coherent
state[17]. Recently, a squeezed state was distributed
through an atmospheric channel, which supplies a refer-
ence for free-space CV QKD with the squeezed state[19].
The distribution of modulated squeezed states over a

quantum channel is the precondition for a QKD with the
squeezed state.Whatweareconcernedwith is the squeezing
property of the modulated squeezed state after it is
transmitted through a lossy channel. In this Letter,

we distribute amodulated squeezed state over a lossy chan-
nel. TheWigner function and noise spectrum of the output
state aremeasured. From themeasuredWigner function of
the output state at different loss levels, we show that the
squeezing level and the amplitude of the squeezed state
are decreased with the increase of the loss (decrease of
the channel efficiency). The noise of the squeezed quadra-
ture is higher than the shot-noise level (SNL) since the
variance of the modulated signal is added to the noise of
the squeezed quadrature. We also quantify the squeezing
of the output state by the frequency shift technique, where
thenoise of the output state is demodulatedby the reference
signal. In this way, squeezing at a high frequency (2MHz in
our experiment) is measured by the frequency shift
technique, while the modulation signal is filtered. The
squeezing of themodulated squeezed state is observed from
9 to 200 kHz. From the decrease of the squeezing at 10 kHz,
the impact of the loss in the channel is quantified.

Figure 1(a) shows the physical model of distributing a
modulated squeezed state over a lossy channel. The lossy
channel is modeled by an optical beam splitter with trans-
mission efficiency η. A squeezed state â is modulated by a
modulation signal ŝ and transmitted through a lossy chan-
nel. The output mode is detected by a homodyne detector
(HD). The amplitude and phase quadratures of an optical
mode â are defined as x̂ ¼ ðâ þ â†Þ∕2 and p̂ ¼ ðâ − â†Þ∕2i,
respectively. For a vacuum state, the variance of the am-
plitude and phase quadratures are hδ2x̂i ¼ hδ2p̂i ¼ 1∕4,
which correspond to the SNL. The output mode is
given by

âout ¼
���
η

p ðâ þ ŝÞ þ
������������
1− η

p
v̂; (1)

where v̂ represents the vacuum noise coming from the
channel. The Wigner function of the output state is
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W ðxÞ ¼ exp½−ð1∕2Þ½ðx− x̄ÞTσ−1ðx− x̄Þ�
2π

������������
det σ

p ; (2)

where x ¼ ðx̂; p̂ÞT and x̄ ¼ ðhx̂i; hp̂iÞT represent the vector
and the mean value (displacement) of the amplitude and
phase quadratures, respectively, and det σ is the determi-
nant of covariance matrix σ. In our case, considering
the channel efficiency η, the covariance matrix can be
written as

σ ¼ 1
4

�
ηe−2r þ 1− η 0

0 ηe2r
0 þ 1− η

�
; (3)

where r and r 0 are the squeezing and anti-squeezing
parameter of the initial amplitude-squeezed state. When
r ¼ r 0, the squeezed state, is a pure state, it is a minimum
uncertainty state, while when r ≠ r 0, the squeezed state is
not pure. The displacement of the output state is

jαj ¼
������������������������
hx̂i2 þ hp̂i2

q
; (4)

where hx̂i ¼ ���
η

p jαjx and hp̂i ¼ ���
η

p jαjp, in which jαjx and
jαjp represent the displacement of the input state along
two axes in phase space.
Figure 1(b) shows the schematic of the experimental

setup. A non-degenerate optical parametric amplifier
(NOPA) is used to produce the squeezed state. The
NOPA is pumped by a continuous-wave intracavity fre-
quency-doubled and frequency-stabilized Nd:YAP/LBO,
which outputs both the fundamental and the second-
harmonic waves (Yu-guang Co, Ltd., F-VIB)[20]. The
output fundamental wave at the 1080 nm wavelength is
used for the injected signals of the NOPA and the local
oscillator of the HD. The second-harmonic wave at the

540 nm wavelength serves as the pump field of the NOPA.
The NOPA consists of an α-cut type-II KTP crystal and a
concave mirror[21,22]. The front face of the KTP is coated to
be used for the input coupler and the concave mirror
serves as the output coupler of the squeezed states, which
is mounted on a piezo-electric transducer to actively lock
the cavity length of NOPA on resonance with the injected
signal at 1080 nm. The transmissions of the input coupler
at 540 and 1080 nm are 99.8% and 0.04%, respectively.
The transmissions of the output coupler at 540 and
1080 nm are 0.5% and 5.2%, respectively. The finesses
of the NOPA for 540 and 1080 nm are 3 and 117, respec-
tively. During the measurements, the pump power of the
NOPA at the 540 nm wavelength is about 180 mW, which
is below the oscillation threshold of 240 mW, and the
intensity of the injected signal at 1080 nm is 6 mW.
The NOPA is operating under the de-amplification condi-
tion, where the phase difference between the pump and
injected beam is locked to ð2n þ 1Þπ (n is an integer).
Under this condition, the coupled modes at the þ45°
and −45° polarization directions are the quadrature-
amplitude and the quadrature-phase squeezed states,
respectively[23]. The experimentally measured squeezing
is −3.50 dB (r ¼ 0.40), while the antisqueezing quadra-
ture components is 8.9 dB (r 0 ¼ 1.02) at 2 MHz.

We simulate one modulation level (one random
Gaussian number) by applying a sine wave modulation
signal at 2 MHz on the amplitude-squeezed state through
an electro-optic modulator. The amplitude-squeezed state
is modulated with a 12 dB modulation signal on the
amplitude quadrature (jαjx ¼ 1.99 and jαjp ¼ 0) and dis-
tributed over a lossy channel. The modulation is com-
pleted by mixing the squeezed state with a modulated
auxiliary coherent state on a beam splitter with a 99% re-
flection coefficient. The loss in the quantum channel is
mimicked by an adjustable beam splitter, which is made
up by a half-wave plate and a polarization beam splitter.
After the transmission, the output state is measured by
the HD. The local oscillator of the HD is set to around
5 mW. The measured SNL is about 17.8 dB above the elec-
tronic noise level, which guarantees that the result of the
homodyne detection is almost not affected by electronic
noises. The noise spectrum of the output state is measured
by sending the output photocurrent of the homodyne
detection system to a spectrum analyzer. The Wigner
function of the output state is measured by mixing the
reference signal at the modulation frequency and the
AC output of the HD. The output signal is low-pass
filtered with a bandwidth of 10 kHz and amplified before
it is recorded by a digital storage oscilloscope. The
sampling rate is chosen to be 500 kpts/s. About 50000
data points are used to reconstruct the Wigner function
of the output state. The maximum likelihood algorithm
is used in the reconstruction of the Wigner function[24].
In the measurement of the Wigner function, the relative
phase between the output optical beam and the local
oscillator in the HD is scanned with a frequency of
2 Hz.

Fig. 1. (a) Physical model and (b) schematic of experimental
setup for distributing a modulated squeezed state over a lossy
channel. η: channel efficiency, EOM: electro-optic modulator,
99%R: a beam splitter with 99% reflection, FG: function gener-
ator, HWP: half-wave plate, PBS: polarization beam splitter,
LO: local oscillator, LPF: a low-pass filter with a bandwidth
of 10 kHz.
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Figure 2 shows the measured Wigner function of the
output state at different channel efficiencies. Figures 2(a)
and 2(b) are the reconstructed Wigner function and the
projection of it in phase space, respectively. It is obvious
that the amplitude modulation in the input amplitude-
squeezed state is a displacement from the amplitude quad-
rature of the squeezed state in phase space. The solid circle
represents the uncertainty of the vacuum state in the
phase space, which is the standard error of the vacuum
noise. In this Letter, according to the definition of quad-
ratures of the optical mode, the noise variance of a vacuum
state is 1/4 for both the amplitude and phase quadratures.
Then, we have the standard error of Rv ¼ 1∕2 for the vac-
uum state, which is the radius of the solid circle. The 1∕

���
e

p
contour of theWigner function (dotted line in Fig. 2) gives
the standard error of a quantum state. The shot axis Rs of
the ellipse is smaller than the radius of the circle, which
means that the output state is a squeezed state. What
is more, we can calculate the variance of the modulated
state through the measured Wigner function picture of
Fig. 2 by comparing the short axis with the radius of
the vacuum state. We can obtain the variance of the
squeezed quadrature by 20 log10ðRs∕RvÞ. The variance
of the anti-squeezed quadrature can be obtained with
the long axis Ra of the ellipse 20 log10ðRa∕RvÞ. The mea-
sured displacement of the output state and the variance of
the squeezed quadrature are jαj ¼ f1.89; 1.62; 1.38; 1.10g
and {−2.8 dB, −2.3 dB, −1.6 dB, −0.9 dB} at η ¼
f0.9; 0.7; 0.5; 0.3g, respectively. It is obvious that the
squeezing and displacement levels of the output state
are decreased along with the decrease of the channel
efficiency.
From Eq. (2), we have the maximum of the Wigner

function, which is Wmax ¼ 1∕ð2π ������������
det σ

p Þ. For a pure
squeezed state (r ¼ r 0), Wmax ¼ 2∕π at η ¼ 1. However,
in the experiment, the generated squeezed state is not

usually pure; generally, r ≠ r 0. In our experiment, the
squeezing and anti-squeezing parameters of the generated
squeezed state are r ¼ 0.40 and r 0 ¼ 1.02, respectively,
which means that the maximum of the Wigner function
is decreased to Wmax ¼ 0.34 at η ¼ 1. In the experiment,
the measured maximums of the Wigner function are
Wmax ¼ f0.34; 0.35; 0.37; 0.42g at η ¼ f0.9; 0.7; 0.5; 0.3g,
which shows that the maximum of the Wigner function
of the output state is changed at different channel
efficiencies.

The amplitude and phase quadratures of the modulated
squeezed state after transmission are given by x̂outðtÞ¼���
η

p ðx̂aþx̂sÞþ
����������
1−η

p
x̂v and p̂outðtÞ¼ ���

η
p ðp̂aþp̂sÞþ

����������
1−η

p
p̂v,

respectively. It is obvious that the noise of the squeezed
state and modulation signal are measured simultaneously
when we measure the noise power of the output mode with
a spectrum analyzer. The measured noise power of the
squeezed quadrature of the modulated squeezed state
may be higher than the SNL because the modulation
signal is added.

Figure 3 shows the measured noise power of the output
state at different channel efficiencies, where the AC part of
the HD system is recorded by a spectrum analyzer. It is
obvious that noise of the amplitude quadrature (squeezed
quadrature) is higher than the SNL, as we mentioned
above. The measured noise power of the amplitude and
phase quadratures of the state are {11.56� 0.22 dB,
10.64� 0.23 dB, 9.87� 0.19 dB, 7.51� 0.20 dB} and
{8.59� 0.23 dB, 7.37� 0.21 dB, 6.88� 0.19 dB, 4.53�
0.20 dB} at η ¼ f0.9; 0.7; 0.5; 0.3g, respectively.

Another way to quantify the squeezing level of the
output state is to demodulate the output state with the
reference signal before measuring the noise spectrum.
The output signal from the mixer is low-pass filtered with
a bandwidth of 10 kHz, amplified, and then recorded
by a spectrum analyzer. In this way, the squeezing at

(a)

(b)

Fig. 2. Measured Wigner function of the output state at different channel efficiencies. The solid circle and dotted ellipse are the stan-
dard errors of the vacuum state and the squeezed state, respectively. The straight line represents the displacement amplitude of the
squeezed state.
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the sideband of 2 MHz is measured by the frequency shift
technique. Figure 4 shows the demodulated noise spec-
trum of the output state from 9 to 200 kHz. The squeezing
level of the modulated squeezed state (red trace) is still
about 3.5 dB below the corresponding SNL (black trace),
which is same as what we obtained for the squeezed state
without modulation at 2 MHz. We also measured the
demodulated noise spectrum of the output state at
10 kHz over the lossy channel, which is shown in Fig. 5.
The squeezing levels are −2.86� 0.45, −2.27� 0.44,
−1.56� 0.37, and −0.90� 0.35 dB at η ¼ 0.9, 0.7, 0.5,
and 0.3, respectively.
Figure 6 shows the displacement [Fig. 6(a)] and noise

power [Fig. 6(b)] of the output state over a lossy channel.
The experimentally measured data points are marked on
the figure, and agree well with the theoretical curves. It is
obvious that the displacement and squeezing level of the

modulated squeezed state decrease along with the de-
crease of the transmission efficiency (increase of the loss)
in the lossy channel.

In conclusion, a modulated squeezed state is distributed
over a lossy channel. By measuring the Wigner function of
the output state, we show that the squeezing level and dis-
placement amplitude of the squeezed state are decreased
along with the decrease of the channel efficiency. The
maximum of the Wigner function of the output state is
changed at different channel efficiencies because the
squeezed state is not pure. The squeezing of the modulated
squeezed state is measured by a frequency shift, which
enables us to quantify the decrease of the squeezing
along with the decrease of the channel efficiency. The pre-
sented results enable us to observe the evolution of the
quantum state over a lossy channel in a QKD with the
squeezed state.

This work was supported by the National Natural
Science Foundation of China (Nos. 11174188, 61475092,
and 11522433) and the OIT (2013805).

Fig. 3. Noise powers of the output state measured directly at
2 MHz with different channel efficiencies. Traces SNL (black),
i (blue), and ii (red) are the noise powers of SNL and the ampli-
tude and phase quadratures of the output state, respectively.
The resolution bandwidth and video bandwidth of the spectrum
analyzer are 30 kHz and 300 Hz, respectively.

Fig. 4. Demodulated noise spectrum of the output state from 9
to 200 kHz. The resolution bandwidth and video bandwidth of
the spectrum analyzer are 30 kHz and 300 Hz, respectively.

(a) (b)

(c) (d)

Fig. 5. Demodulated noise power of the output state at 10 kHz
with different channel efficiencies. Traces SNL (black), i (blue),
and ii (red) are the noise powers of SNL and the amplitude and
phase quadratures of the output state, respectively. The resolu-
tion bandwidth and video bandwidth of the spectrum analyzer
are 30 kHz and 300 Hz, respectively.

Fig. 6. Displacement and noise power of the output state. Traces
i (blue) and ii (red) in (b) are the noise powers of the squeezing
and anti-squeezing measured at 10 kHz, respectively.
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