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Cover    The origin of high-energy cosmic-rays over a wide range of energies is still among the most fundamental problems in astrophysics. 
The authors of this work have reconsidered a scenario supposed to be relevant to cosmic-ray generation via self-consistent large-scale numerical 
simulation, i.e., the transport of a high-energy lepton plasma flow (composed of electron and positron pairs) through a background plasma (com-
posed of electrons and protons). They have discovered unique two-stage acceleration processes of background protons. Strong turbulent electric 
and magnetic fields are formed first in this system via the Weibel-type instability and both background electrons and protons are stochastically 
accelerated in the fields. In particular, accelerated protons have a perfect inverse-power energy spectrum, typical for Fermi II acceleration. More-
over, a collisionless shockwave structure emerges gradually later along the same direction as the injected lepton flow, which further accelerates 
some background protons longitudinally. The front cover image is an artistic picture of turbulent field structures and accelerated particles (see the 
article No. 105201 by CUI YunQian et al.) 
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We experimentally study optical homodyne and heterodyne detections with the same setup, which is flexible to manipulatethe
signal sideband modulation. When the modulation only generates a single signal sideband, the light field measurement bymixing
the single sideband atω0 ± Ω with a strong local oscillator at the carrier frequencyω0 on a beam splitter becomes balanced
heterodyne detection. When two signal sidebands atω0±Ω are generated and the relative phase of the two sidebands is locked, this
measurement corresponds to optical balanced homodyne detection. With this setup, we may confirm directly that the signal-to-noise
ratio with heterodyne detection is two-fold worse than thatwith homodyne detection. This work will have important applications
in quantum state measurement and quantum information.

homodyne detection, heterodyne detection, sideband modulation, the signal-to-noise ratio
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1 Introduction

Optical homodyne and heterodyne detections are the ex-
tremely useful and flexible measuring methods and have
broad applications in optical communication [1,2], weak sig-
nal detection [3]. In general, optical homodyne and hetero-
dyne detections are defined as the difference of the optical
frequencies of the two mixed field is zero and nonzero re-
spectively. When the signal is mixed with a relative strong
local oscillator (LO) on a 50% beam splitter, the two output
modes are detected by a pair of detectors and the difference of
two photocurrents can be measured, this scheme corresponds
to balanced homodyne and heterodyne detections. It is well
known that balanced detection can cancel the noise resulting
from local oscillator [4,5]. Balanced homodyne detection is

*Corresponding author (email: jzhang74@sxu.edu.cn)
†Contributed by ZHANG Jing (Associated Editor)

phase sensitive and has been intensively utilized to measure
non-classical states of light [6–10] and further in quan-
tum information experiments [11–14]. Heterodyne detection
has been shown that its signal-to-noise ratio is two-fold worse
than that with homodyne detection [4,5,15,16].

In this paper, we use sideband method [17,18] in quan-
tum optics to investigate balanced homodyne and heterodyne
detections in the same setup. When only mixing the single
sideband signal atω0 ± Ω with a strong LO at the carrier
frequencyω0 on a 50% beam splitter, this measurement cor-
responds to balanced heterodyne detection. When there are
two signal sidebands atω0 ± Ω and the relative phase of
the two sidebands is locked, this measurement corresponds
to balanced homodyne detection. Although the frequencies
of two sidebands are different with that of LO, it still refers
as balanced homodyne detection since two sidebands locate
symmetrically at the two sides of the carrier frequency of
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LO, and at the same time the relative phase of two sidebands
is fixed. This balanced homodyne detection for two side-
bands has been exploited widely in quantum optics experi-
ments [6–8,19,20]. We will demonstrate that this balanced
homodyne detection is also phase-sensitive and its signal-to-
noise ratio is two-fold better than that with heterodyne de-
tection. This work gives the deeper understanding of opti-
cal homodyne and heterodyne detections and the closely re-
lationship between them. Moreover, the scheme of generat-
ing two sidebands in this paper is different from the general
method of phase-modulation (or amplitude-modulation) by
an electro-optic modulator (EOM). A laser with frequencyω0

is phase-modulated (or amplitude-modulated) by EOM with
frequencyΩ to generate two sidebandsω0 ± Ω, hence, this
light includes a strong carrier field and two sidebands. The
signal field in this work only has two sidebands and the opti-
cal field at carrier frequencyω0 is vacuum, which will have
the special applications in quantum information and commu-
nication.

2 Experimental setup and results

Figure 1 shows the experimental setup. A continuous-wave
single-frequency coherent laser at 1064 nm is split into two
parts. One passes through a mode clean cavity to be used
for the LO in the balanced detection system. The other is
sent through three acousto-optic modulators (AOMs, 3110-
197, Crystal Technology) for generating signal sidebands.
The laser first is frequency down-shifted by the negative first-
order diffraction of AOM1 with the frequency –110 MHz.
Then the downshifted laser is split into two beams, which
are frequency up-shifted by the positive first-order diffraction
of AOM2 with +115 MHz and AOM3 with+105 MHz, re-
spectively. The two frequency-shifted beams are combined
on 50% BS1 with the same polarization, so the two side-
bands atΩ+(−) = 5 MHz is generated. Here, the sinu-
soidal signals of AOMs are provided by three signal gener-
ators (N9310A, Agilent) respectively and the diffraction ef-

ficiency of all AOMs are about 70%.The two-sideband field
is coupled into a single-mode polarization-maintaining fiber
and then combined with a strong local oscillator on 50% BS2
with the same polarization. The output fields of BS2 are de-
tected by two balanced detectors, the substraction of whose
photocurrents is measured by the spectrum analyzer. The sin-
gle sideband can be obtained by blocking the incident beam
of AOM2 (or AOM3). Here, an auxiliary beam without fre-
quency shift is used to adjust the visibility of the interference
between the local and the signal. When the data is measured,
the auxiliary beam will be blocked.

The difference photocurrent of the balanced detection can
be expressed as:

δi = i1 − i2 = a†LOas + aLOa†s. (1)

The LO field can be written asaLO = 〈aLO〉ei(ω0t+θ), and the
signal field asas = 〈a+〉ei(ω0+Ω+)t + 〈a−〉ei(ω0−Ω−)t, which in-
cludes two sidebands. Here,θ is the relative phase between
the LO and signal field. Hence, the photocurrent of the signal
field is written as:

δis = 2〈aLO〉[〈a+〉 cos(Ω+t − θ) + 〈a−〉 cos(Ω−t + θ)]. (2)

Here, two terms represent the two beatnotes of the two side-
bands with LO, respectively. Case 1: When only one signal
sideband is applied (a+ or a−), the signal strength becomes
(2〈aLO〉〈as〉)2 at the frequency ofΩs, where〈as〉 = 〈a+(−)〉

andΩs = Ω+(−). We can see that the signal strength becomes
constant and is independent of the relative phaseθ between
the LO and signal field for single signal sideband, as shown
in Figure 2 (red line). This case corresponds to balanced het-
erodyne detection. Case 2: When two signal sidebands are
applied at the same time and have the same amplitude with
〈as〉 = 〈a+〉 = 〈a−〉, the difference of photocurrent can be
written as:

δis = 2〈aLO〉〈as〉 cos

(

Ω+ −Ω−

2
t − θ

)

cos

(

Ω+ + Ω−

2
t

)

. (3)
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Figure 1 (Color online) Schematic diagram of the experimental setup. OI: optical isolator; HW: half-wave plate; PBS: polarizing beam splitter; AOM:
acousto-optic modulator; PM: single-mode polarization-maintaining fiber; EOM: electro-optic modulator; SA: spectrum analyzer.
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Figure 2 (Color online) The measured noise spectra of the signal beamby the balanced detection system. The modulation frequencyof AOM1 and AOM2
is fixed at 110 and 115 MHz, respectively, which corresponds to up sideband frequencyΩ+ =5 MHz. The frequency of AOM3 is changed to set the down
sideband frequencyΩ−. The black line is the shot noise limit and the red line corresponds to the single sideband. The blue lines in (a–e) correspond to the two
sidebands cases with the different frequency difference of up and down sideband∆Ω± = Ω+ − Ω−: –10, –5, 0 Hz (withθ = 0), +5, +10 Hz, respectively. The
center frequency of the spectrum analyzer is 5 MHz and the span is zero. RBW is 100 kHz, VBW is 300 Hz and the sweep time is 500 ms. Here, the frequency
difference of up and down sideband∆Ω± is much less than the RBW and VBW.

The signal strength measured by spectrum analyzer becomes
4(2〈aLO〉〈as〉)2 cos2[(Ω+ − Ω−)t/2 − θ] at the frequency of
(Ω++Ω−)/2. Compared with the single signal sideband, there
are several new characteristics (blue line in Figures 2(a),(b),
(d) and (e). First, the signal strength has a periodical modu-
lation with the frequency∆Ω± = Ω+ −Ω−. Second, the max-
imum signal strength for two signal sidebands is four-fold
larger than that for single signal sideband. The minimum sig-
nal strength reaches the shot noise limit. When the difference
of the frequencies of two signal sidebands is zero (∆Ω±=0),
the signal strength becomes 4(2〈aLO〉〈as〉)2 cos2(θ). Here, the
relative phaseθ may be the relative phase between up and
down sidebands or between the LO and signal field. When
the relative phase between up and down sidebands is fixed,
this case corresponds to balanced homodyne detection, which
is phase sensitive to the relative phaseθ between the LO
and signal field. When the relative phaseθ is zero, the sig-
nal strength reaches the maximum value (blue line in Figure
2(c)), which corresponds the constructive inference of two
sidebands. When the relative phaseθ is π

2 , the signal strength
becomes zero (shot noise level), which corresponds the de-
structive inference of two sidebands.

As above discussion, only when the two signal sideband
frequenciesΩ+(−) are the same and the relative phase is fixed,
the measurement becomes the balanced homodyne detection.
Here we develop two methods to lock the relative phase be-
tween up and down sidebands.

Method 1. Figure 3 shows the schematic diagram of lock-
ing the relative phase between up and down sidebands. The
sinusoidal signal output of the signal generator 1 is divided
into two parts: one is used to drive the AOM1 and the other
is further divided into two parts to mix with the output of the
signal generators 2 and 3. The sinusoidal signal output of the

signal generator 2 (3) is also divided into two parts: one is
used to drive the AOM2 (AOM3) and the other is to mix with
the output of the signal generator 1. Two sinusoidal signals
from the signal generators 1 and 2 (1 and 3) are mixed down
to generate about 5 MHz signal using a mixer (Mini-Circuits
ZAD-6+). The mixer’s output signal of about 5 MHz pass
through a low-pass in order to filter the high frequency sig-
nals of the inputs of the mixer. Thus we obtain two ways of
5 MHz signal, which correspond to two sideband frequencies
Ω+ andΩ− respectively. Two ways of 5 MHz signal are elec-
tronically phase-locked to the same 5 MHz reference signal
by two phase locked loops (PLL). The output error signal of
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Figure 3 (Color online) The schematic diagram of the method 1 for locking
the relative frequency and phase of the two sidebands. S1-3:signal genera-
tor; PS: power splitter; AOM: acousto-optic modulator; LPF: low-pass filter;
PLL: phase locked loop.
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the PLL contains the relevant information abut the frequency
and phase difference between two input signals. Two ways
of the error signal, after the proportional-integral-derivative
controller, are feedback into the signal generators 2 and 3,
respectively. When the frequency are same and the relative
phase between up and down sidebands is locked, the optical
field with two signal sidebands can be phase-sensitively de-
tected by the balanced homodyne detection.

By controlling the phase of the LO, the relative phaseθ be-
tween the LO and signal field can be fixed with zero and the
signal strength reaches the maximum value (blue line in Fig-
ure 4(a)). When the relative phaseθ is fixed atπ/2, the signal
strength becomes zero and reaches the shot noise level (pink
line in Figure 4(a)). This pink line presents the large fluctua-
tion due to imperfect locking. When we scan the phase of LO
field, the signal strength presents a periodical change (green
line in Figure 4(a)).

Method 2. Here, in Figure 5 we present a simpler scheme
to make the frequencies and the relative phase of the up and
down sidebands locked by using the clock synchronization of
Agilent signal generators. The three signal generators canbe
locked together in frequency and phase by using the same ref-
erence (clock) frequency. So the sinusoidal signal outputsare
generated from the same clock source. For instance, the sig-
nal generator 1 serves as the master reference, whose signal
first is locked with its internal reference. The reference out-
put of the signal generator 1 is connected with the external
reference input of the signal generators 2 and 3. The signals
of the signal generators 2 and 3 are locked with the exter-
nal reference. The result of the balanced homodyne detection
is shown in Figure 4(b), which is better than that with the
method 1.

We further measure the noise spectra with the frequency
span of 3 MHz when locking the frequency and phase of
the two sidebands with method 2. The red line in Figure 6
presents the case of one signal sideband, which corresponds
to balanced heterodyne detection. The signal-to-noise ratio
for one signal sideband is 12 dB, which is independent of the
relative phaseθ between the LO and signal field for single
signal sideband. When two signal sidebands are applied and
the phase of the two sidebands is locked, the signal-to-noise
ratio is sensitive to the relative phaseθ between the LO and
signal field for two signal sidebands, which corresponds to
balanced homodyne detection. The maximum signal-to-noise
ratio for two signal sidebands is four-fold (6 dB) larger than
that for single signal sideband when the relative phaseθ = 0.
When consider the factor 2 of two sideband signals compared
with single sideband, we confirm that the signal-to-noise ra-
tio with heterodyne detection is two-fold worse than that with
homodyne detection. The signal-to-noise ratio for two signal
sidebands reaches zero when the relative phaseθ = π/2.

3 Conclusion

In conclusion, we experimentally study optical balanced ho-

modyne and heterodyne detections by the sideband method.
The single sideband and two sidebands signals can be ob-
tained easily in our experimental setup, therefore opticalbal-
anced homodyne and heterodyne detections can be investi-
gated and compared simultaneously. We also develop two
methods to lock the relative phase between up and down side-
bands for realizing the balanced homodyne detection. We
confirm that this balanced homodyne detection scheme is
phase-sensitive and its signal-to-noise ratio is two-foldbet-
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Figure 4 (Color online) The noise spectra measured after locking thefre-
quency and phase of the two sidebands with two different methods. (a) Use
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ter than that with heterodyne detection. The scheme of gener-
ating single and two sideband signal in this work can be used
in the quantum information and quantum metrology [21–23].
Resently, we noticed an interesting work where the hetero-
dyne detection with a bichromatic local oscillator was theo-
retically and experimentally studied [24].
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