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Quantum analysis and experimental investigation of the nondegenerate optical parametric oscillator
with unequally injected signal and idler
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We developed a quantum analysis of the nondegenerate optical parametric oscillator (NOPO) with unequally
injected signal and idler. Both the steady-state output field and the two-mode quantum correlation spectrum are
investigated under the condition of different injected idler-to-signal ratios (ISRs) and the relative phase between
the pump and the injected seed. It is found that when the seed is injected through the output coupler, the NOPO
allows for the robust generation of two-mode quantum entanglement even if the relative phase is free running and
the ISR is as high as 0.7. At the specific relative phase of zero, a high degree of entanglement can exist across
a whole range of ISRs. An experimental study of the NOPO with unequal seeds is presented, and the observed
results verify the theoretical predictions.
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I. INTRODUCTION

Entanglement is now widely employed as an important
resource for quantum information processing, such as quantum
communication [1], quantum computing [2], and quantum
metrology [3], etc. For instance, it is found that in continuous-
variable (CV) quantum key distribution, an entangled-state-
based protocol can tolerate much more excess noise of the
quantum channel than the coherent-state protocol [4], or
equivalently, can have longer secure communication distances
and higher secure bit rates. In one-way quantum computation, a
highly entangled state, the so-called cluster state is a necessary
computational resource [5]. The sensitivity and resolution of
phase measurement in a Mach-Zehnder interferometer can
reach the sub-Heisenberg sensitivity with the aid of two-mode
squeezed vacuum and parity detection [6].

Intracavity second-order nonlinear processes are powerful
approaches for the preparation of CV quantum entanglement
[7–21]. Among them, the nondegenerate optical parameter
oscillator (NOPO) has attracted considerable attention. Ac-
tually, the Einstein-Podolsky-Rosen (EPR) paradox was first
demonstrated for continuous variables by employing a NOPO
below the threshold [7–9]. By injecting both the signal and
the idler fields with equal average intensity into the NOPO,
bright two-mode squeezed light which has the EPR correlation
between the signal and the idler can be generated [10].
When only the signal is injected, quantum entanglement
with a relatively intense field has been predicted [22] and
experimentally demonstrated [20]. In this scenario, the NOPO
operates essentially in a phase-insensitive regime, and the
entanglement generation is robust against the relative phase
between the pump and the injected signal fields.

Below-threshold NOPO with bright injected fields can
generate bright quantum entanglement. The injected seed
facilitates the cavity-length stability and the relative phase
locking between the local oscillator and the output signal fields
in homodyne detection which is necessary to characterize the
field quadratures in phase space. Furthermore, wide frequency
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tunability is also attainable with bright fields. Previous works
mainly focused on injecting the NOPO with both the signal
and the idler fields where they have the same average intensity
or injecting the NOPO with only the signal field where the
idler field is absent or equivalent in a vacuum state. Here
the quantum properties of the NOPO in a more general case
where the injected signal and idler have unequal amplitudes
are investaged.

In real experimental conditions, it is difficult to obtain a
pure injected signal field when the signal field is derived from
the down-conversion field. It is probable that some residual
idler field will be mixed in the injected signal field. Such
a residual idler field can come from the nonideal filtering
of the idler field, the backscattering light from the nonlinear
crystal, and the cavity mirror of the NOPO, etc. It is necessary
to investigate the effect of such a residual idler field on
the quantum entanglement characteristics of the NOPO, i.e.,
the evolution of the two-mode quantum correlation spectrum
versus the different injected idler-to-signal ratios (ISRs) and
relative phase between the pump and the injected seed.

In this paper, we present the quantum analysis and exper-
imental investigation of the NOPO for the case of unequally
injected signal and idler fields. In Sec. II, we introduce the
theoretical model. The steady-state mean-value solutions are
derived in Sec. III. Then, a perturbation expansion approach
is utilized to deduce linear quantum fluctuation equations for
the combined field quadratures in Sec. IV. In Sec. V, based on
the results of quantum noise spectrum of the combined field
quadratures, we analyze in detail the quantum characteristics
of the NOPO under the conditions of different injected signal-
to-idler ratios and the relative phases between the pump and
the injected seed. In Sec. VI, we present an experimental study
of the NOPO with unequal seeds and compare the observed
results with the theoretical predictions.

II. THEORETICAL MODEL

The system we study consists of three interacting field
modes within a nonlinear resonator, i.e., pump, signal, and
idler modes with angular frequencies of ω0, ω1, and ω2,
respectively, where the energy conservation relation is satisfied
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ω0 = ω1 + ω2. We assume that the pump field ε0 is strong and
the signal and idler fields are much weaker than the pump
with injected fields ε1 and ε2, respectively. The intracavity
fields at frequencies ωj (j = 0 − 2) are described by the boson
annihilation operators âj . �̂j denote the reservoir operators
which describe the damping of the cavity. χ represents the
nonlinear coupling constant of the nonlinear crystal.

The Heisenberg-picture Hamiltonian which describes this
model is given by [23]

Ĥ =
3∑

j=0

Ĥj ,

Ĥ0 =
2∑

j=0

(�ωj â
†
j âj ),

Ĥ1 =
2∑

j=0

i�(εj e
−iωj t â

†
j − ε∗

j e
iωj t âj ), (1)

Ĥ2 = i�χ (â†
1â

†
2â0 − â1â2â

†
0),

Ĥ3 =
2∑

j=0

(âj �̂
†
j + â

†
j �̂j ).

In a driven system, the density matrix should be calculated
as the solution of a master equation. The master equation for
the reduced density operator in a rotating frame, obtained after
the elimination of the reservoirs using standard techniques, is
given by

∂ρ̂

∂t
= [Ĥ0+Ĥ1+Ĥ2,ρ̂]/i� +

2∑
j=0

γj ([âj ρ̂,â
†
j ] + [âj ,ρ̂â

†
j ]),

(2)
where γj describe the cavity mode damping rate which is
related to the cavity linewidth.

It is convenient to transform Eq. (2) into a Fokker-Planck
equation using the positive-P representation [24],

ρ̂ =
∫ |α〉〈(α+)∗|

〈(α+)∗||α〉P+(α,α+)d6α d6α+, (3)

where {α} ≡ (α0,α1,α2) and {α+} ≡ (α+
0 ,α+

1 ,α+
2 ) are two

independent triplets of complex variables and P (α,α+) is a
positive phase-space distribution function. By using the above
equation and assuming that boundary terms vanish on partial
integration, P (α,α+) satisfies the following Fokker-Planck
equation:

∂P+
∂t

=
{

∂

∂α0
[γ0α0 + χα1α2 − ε0] + ∂

∂α+
0

[γ0α
+
0 + χα+

1 α+
2 − ε∗

0] + ∂

∂α1
[γ1α1 − χα0α

+
2 − ε1]

+ ∂

∂α+
1

[γ1α
+
1 − χα+

0 α2 − ε∗
1] + ∂

∂α2
[γ2α2 − χα0α

+
1 − ε2] + ∂

∂α+
2

[γ2α
+
2 − χα+

0 α1 − ε∗
2]

+ ∂2

(∂α1∂α2)
(χα0) + ∂2

(∂α+
1 ∂α+

2 )
(χα+

0 )

}
P+(α,α+,t). (4)

Equation (4) can be written as the following set of Itô stochastic equations [22]:

dα0 = (ε0 − γ0α0 − χα1α2)dt, dα+
0 = (ε∗

0 − γ0α
+
0 − χα+

1 α+
2 )dt,

dα1 = (ε0 − γ1α1 + χα+
2 α0)dt + √

χα0dW1, dα+
1 = (ε∗

1 − γ1α
+
1 + χα2α

+
0 )dt +

√
χα+

0 dW+
1 , (5)

dα2 = (ε2 − γ2α2 + χα+
1 α0)dt + √

χα0dW2, dα+
2 = (ε∗

2 − γ2α
+
2 + χα1α

+
0 )dt +

√
χα+

0 dW+
2 ,

where the complex Gaussian noise terms obey the following relations:

〈dW1〉 = 〈dW2〉 = 0, 〈dW1dW2〉 = 〈dW+
1 dW+

2 〉 = dt. (6)

Without loss of generality, we consider the input pump as a real field with ε0 = ε∗
0 = E0, the injected signal and idler have

the forms of ε1 = E1e
iϕ1 and ε2 = E2e

iϕ2 , where ϕ1 and ϕ2 denote the relative phase shift. The field quadratures are defined as

X′
i = (αi + α+

i ), Y ′
i = (αi − α+

i )/i. (7)

For simplicity we set γ1 = γ2 = γ , γr = γ0/γ and introduce two scaling parameters,

g = χ/(γ
√

2γr ), τ = γ t, (8)

and the scaled quadratures,

x ′
0 = g

√
2γrX

′
0, y ′

0 = g
√

2γrY
′
0, x ′

1 = gX′
1, y ′

1 = gY ′
1, x ′

2 = gX′
2, y ′

2 = gY ′
2. (9)

The stochastic equations for the scaled quadratures are

dx ′
0 = −γr [x ′

0 − 2μ0 + (x ′
1x

′
2 − y ′

1y
′
2)]dτ,

dy ′
0 = −γr [y ′

0 + (x ′
1y

′
2 + x ′

2y
′
1)]dτ,

dx ′
1 = [−x ′

1 + 2μ1 cos(ϕ1) + (x ′
0x

′
2 + y ′

0y
′
2)/2]dτ + g(

√
x ′

0 + iy ′
0dw1 +

√
x ′

0 − iy ′
0dw+

1 )/
√

2,
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dy ′
1 = [−y ′

1 + 2μ1 sin(ϕ1) + (y ′
0x

′
2 − x ′

0y
′
2)/2]dτ + g(

√
x ′

0 + iy ′
0dw1 −

√
x ′

0 − iy ′
0dw+

1 )/(i
√

2),

dx ′
2 = [−x ′

2 + 2μ2 cos(ϕ2) + (x ′
0x

′
1 + y ′

0y
′
1)/2]dτ + g(

√
x ′

0 + iy ′
0dw2 +

√
x ′

0 − iy ′
0dw+

2 )/
√

2,

dy ′
2 = [−y ′

2 + 2μ2 sin(ϕ2) + (y ′
0x

′
1 − x ′

0y
′
1)/2]dτ + g(

√
x ′

0 + iy ′
0dw2 −

√
x ′

0 − iy ′
0dw+

2 )/(i
√

2), (10)

with

μ0 = E0χ/γ γ0, μ1 = E1χ/γ
√

2γ0γ , μ2 = E2χ/γ
√

2γ0γ , dw1 =
√

2γ dW1, dw+
1 =

√
2γ dW1

+,
(11)

dw2 =
√

2γ dW2, dw+
2 =

√
2γ dW+

2 , μ0 = √
Pp/Pth, μ1 = √

ωpPs/(2ωsPth), μ2 = √
ωpPi/(2ωiPth),

where Pp, Ps , Pi , and Pth are the external power of the pump, injected signal, injected idler, and the threshold, respectively. It is
noted that μ0 = 1 represents the threshold for oscillation when no seed beam is injected into the optical cavity.

III. STEADY-STATE MEAN-VALUE SOLUTION

By taking dx ′(y ′)j /dτ = 0 (j = 0 − 2) and neglecting the noise terms, the steady-state mean value of Eq. (10) is related to
the classical nonlinear equations of motion for the interacting fields,

0 = −γr [x ′
0s − 2μ0 + (x ′

1sx
′
2s − y ′

1sy
′
2s)], 0 = −γr [y ′

0s + (x ′
1sy

′
2s + x ′

2sy
′
1s)],

0 = [−x ′
1s + 2μ1 cos(ϕ1) + (x ′

0sx
′
2s + y ′

0sy
′
2s)/2], 0 = [−y ′

1s + 2μ1 sin(ϕ1) + (y ′
0sx

′
2s − x ′

0sy
′
2s)/2], (12)

0 = [−x ′
2s + 2μ2 cos(ϕ2) + (x ′

0sx
′
1s + y ′

0sy
′
1s)/2], 0 = [−y ′

2s + 2μ2 sin(ϕ2) + (y ′
0sx

′
1s − x ′

0sy
′
1s)/2],

where x ′(y ′)js represents the steady-state quadratures.
The stationary solutions of Eq. (12) can be used to examine the classical properties of the system. Because of the difficulty

involved in solving the equations analytically, numerical simulation is employed here. From the above equations, we can obtain
the intracavity modes,

αj =(x ′
js + iy ′

js)/2g (j = 1,2), α0 = (x ′
0s + iy ′

0s)/(2g
√

2γr ), (13)

and their relative phases,

θj = arg αj = arg[(x ′
js + iy ′

js)/(2g)](j = 1,2), θ0 = arg α0 = arg[(x ′
0s + iy ′

0s)/(2g
√

2γr )]. (14)

Assuming the seed fields are injected through the output coupler with intensity transmittivity of T (T � 1), we can obtain
the output fields from the input-output relations,

βj =
√

2γαj − (1/
√

2γ )εj (j = 1,2), (15)

where 2γ τ0 = T and τ0 is the cavity round-trip time. Here it has been assumed that the loss of seed fields is only due to the
output-coupling mirror. The output field intensity normalized to the input field can be given by

|βj |2/|εl/
√

2γ |2 = 4|αj |2/μ2
l + μ2

j /μ
2
l − Re[2αje

−iϕj /μl], j,l ∈ {1,2}. (16)

Figure 1 shows the steady-state signal and idler output field
intensity normalized to the input signal intensity as a function
of the relative phase ϕ = ϕ1 + ϕ2 between the pump and the
injection seed. The amplitudes of the pump and injection signal
are fixed, whereas the amplitude of the injection idler varies.
If the idler field is absent, both down-converted fields are
amplified, and the output intensity remains constant, which
means the NOPO is essentially phase insensitive. When the
idler injection is present, a phase-sensitive phenomenon will
occur, and the output field intensity depends on the relative
phase ϕ and oscillates periodically. If the amplitude of the
injection idler and the injection signal is equal and the
output signal and idler intensity exhibit the same behavior,
one observes the familiar phenomenon of parametric ampli-
fication at ϕ = 2kπ and parametric deamplification at ϕ =
(2k + 1)π .

IV. LINEAR STOCHASTIC EQUATIONS FOR QUANTUM
FLUCTUATIONS

To derive the linear stochastic equations, we distinguish
two different ways of injecting the seed.

(I) Assuming the seed field is injected through one of the
high-reflectivity cavity mirrors, the input-output relation is
given by

βj =
√

2γαj , θj = arg αj = arg βj , j = 1,2. (17)

(II) Assuming the seed field is injected through the output
coupler, in this case, the input-output relation is given by

βj =
√

2γαj − (1/
√

2γ )εj , j = 1,2, φj = arg βj ,

(18)
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FIG. 1. Steady-state signal and idler output field intensity nor-
malized to the input signal intensity as a function of the relative
phase between the pump and the injection seed ϕ = ϕ1 + ϕ2. For all
curves, μ0 = 0.8,μ1 = 0.01. Signal: (a) μ2 = 0.01; (b) μ2 = 0.001;
(d) μ2 = 0. Idler: (f) μ2 = 0.01; (c) μ2 = 0.001; (e) μ2 = 0.

For the first case of injecting the seed, the phase of the output
field is identical to the intracavity field. Whereas for the second
case of injecting the seed, the phase of the output field differs
from that of the intracavity field. Such a discrepancy will lead
to different external correlation spectra between the signal and
the idler fields as we shown in Sec. V.

In order to unify the expressions, we use θj to represent the
phase for both cases considered above: θj = θj for case I and
θj = φj for case II. By using the relative phase θj , we define
the new field quadratures,

Xj = (e−iθj αj + eiθj α+
j ), Yj = (e−iθj αj − eiθj α+

j )/i,

x0 = g
√

2γrX0, y0 = g
√

2γrY0, (19)

x1 = gX1, y1 = gY1, x2 = gX2, y2 = gY2,

where Xj (xj ) is the amplitude quadrature and Yj (yj ) is the
phase quadrature.

The stochastic equations for the new scaled quadratures
defined by Eq. (19) can be given by

dx0 = −γr [x0 − 2μ0 cos(θ0) + (x1x2 − y1y2) cos(θ ) − (x1y2 + x2y1) sin(θ )]dτ,

dy0 = −γr [y0 + 2μ0 sin(θ0) + (x1y2 + x2y1) cos(θ ) + (x1x2 − y1y2) sin(θ )]dτ,

dx1 = [−x1 + 2μ1 cos(ϕ1 − θ1) + (x0x2 + y0y2)cos(θ )/2 + (y0x2 − x0y2) sin(θ )/2)]dτ

+ g[e−iθ1
√

eiθ0 (x0 + iy0)dw1 + eiθ1
√

e−iθ0 (x0 − iy0)dw+
1 ]/

√
2,

dy1 = [−y1 + 2μ1 sin(ϕ1 − θ1) + (y0x2 − x0y2)cos(θ )/2 − (x0x2 + y0y2)sin(θ )/(2)]dτ

+ g[e−iθ1
√

eiθ0 (x0 + iy0)dw1 − eiθ1
√

e−iθ0 (x0 − iy0)dw+
1 ]/(i

√
2),

dx2 = [−x2 + 2μ2 cos(ϕ2 − θ2) + (x0x1 + y0y1)cos(θ )/2 + (y0x1 − x0y1)sin(θ )/2]dτ

+ g[e−iθ2
√

eiθ0 (x0 + iy0)dw2 + eiθ2
√

e−iθ0 (x0 − iy0)dw+
2 ]/

√
2,

dy2 = [−y2 + 2μ2 sin(ϕ2 − θ2) + (y0x1 − x0y1)cos(θ )/2 − (x0x1 + y0y1)sin(θ )/2]dτ

+ g[e−iθ2
√

eiθ0 (x0 + iy0)dw2 − eiθ2
√

e−iθ0 (x0 − iy0)dw+
2 ]/(i

√
2), (20)

where θ = θ1 + θ2 − θ0. To investigate the quantum properties of the system, we can introduce a formal perturbation expansion
in powers of the parameter g,

xk =
∞∑

n=0

gnx
(n)
k , yk =

∞∑
n=0

gny
(n)
k , (21)

The zeroth term of the above expansion represents the property of the classical field of order 1/g, whereas the first-order term
corresponds to quantum fluctuations of order 1. The nonlinear corrections coming from higher-order terms correspond to the
quantum fluctuations of order g and higher, which can be neglected when the NOPO is below and not very close to the threshold
[24]. This region is just what concerns us in the present paper. Using Eq. (21), the first-order set of equations can be written as

dx
(1)
0 = − γr

[
x

(1)
0 + (

x1sx
(1)
2 + x2sx

(1)
1 − y1sy

(1)
2 − y2sy

(1)
1

)
cos(θ ) − (

x1sy
(1)
2 + x

(1)
1 y2s + x2sy

(1)
1 + x

(1)
2 y1s

)
sin(θ )

]
dτ,

dy
(1)
0 = − γr

[
y

(1)
0 + (

x1sy
(1)
2 + x

(1)
1 y2s + x2sy

(1)
1 + x

(1)
2 y1s

)
cos(θ ) + (

x1sx
(1)
2 + x2sx

(1)
1 − y1sy

(1)
2 − y2sy

(1)
1

)
sin(θ )

]
dτ,

dx
(1)
1 =[−x

(1)
1 + (

x0sx
(1)
2 + x2sx

(1)
0 + y0sy

(1)
2 + y2sy

(1)
0

)
cos(θ )/2 + (−x0sy

(1)
2 − x

(1)
0 y2s + x2sy

(1)
0 + x

(1)
2 y0s

)
sin(θ )/2

]
dτ

+ [
e−iθ1

√
eiθ0 (x0s + iy0s)dw1 + eiθ1

√
e−iθ0 (x0s − iy0s)dw+

1

]
/
√

2,

dy
(1)
1 =[−y

(1)
1 + (−x0sy

(1)
2 − x

(1)
0 y2s + x2sy

(1)
0 + x

(1)
2 y0s

)
cos(θ )/2 − (

x0sx
(1)
2 + x2sx

(1)
0 + y0sy

(1)
2 + y2sy

(1)
0

)
sin(θ )/2

]
dτ

+ [
e−iθ1

√
eiθ0 (x0s + iy0s)dw1 − eiθ1

√
e−iθ0 (x0s − iy0s)dw1

+]
/
√

2i,

013831-4



QUANTUM ANALYSIS AND EXPERIMENTAL . . . PHYSICAL REVIEW A 93, 013831 (2016)

dx
(1)
2 =[−x

(1)
2 + (

x0sx
(1)
1 + x1sx

(1)
0 + y0sy

(1)
1 + y1sy

(1)
0

)
cos(θ )/2 + (−x0sy

(1)
1 − x

(1)
0 y1s + x1sy

(1)
0 + x

(1)
1 y0s

)
sin(θ )/2

]
dτ

+ [
e−iθ2

√
eiθ0 (x0s + iy0s)dw2 + eiθ2

√
e−iθ0 (x0s − iy0s)dw+

2

]
/
√

2,

dy
(1)
2 =[−y

(1)
2 + (−x0sy

(1)
1 − x

(1)
0 y1s + x1sy

(1)
0 + x

(1)
1 y0s

)
cos(θ )/2 − (

x0sx
(1)
1 + x1sx

(1)
0 + y0sy

(1)
1 + y1sy

(1)
0

)
sin(θ )/2

]
dτ

+ [
e−iθ2

√
eiθ0 (x0s + iy0s)dw2 − eiθ2

√
e−iθ0 (x0s − iy0s)dw+

2

]
/
√

2i. (22)

Equations (22) are linear stochastic equations with nonclassical Gaussian white noise. It is useful to introduce combined field
quadratures including both the signal and the idler modes, and the two-mode quadratures are defined as

x± = (
x

(1)
1 ± x

(1)
2

)
/
√

2, y± = (
y1

(1) ± y2
(1)

)
/
√

2. (23)

Taking the steady-state solutions for the pumped field quadratures, the linear quantum fluctuations in the combined field
quadratures can be written as

dx+ = {−Ax+ + Ex− + Fy+ + Gy−}dτ + dnx+, dx− = {−Bx− + Ex+ − Fy− − Gy+}dτ + dnx−,
(24)

dy+ = {−Cy+ + Ey− + Fx+ − Gx−}dτ + dny+, dy− = {−Dy− + Ey+ − Fx− + Gx+}dτ + dny−,

where the coefficients of the equations are defined as

A = 1 − [x0s cos(θ )/2 + y0s sin(θ )/2] + (x1s + x2s)
2/4 + (y1s + y2s)

2/4,

B = 1 + [x0s cos(θ )/2 + y0s sin(θ )/2] + (x1s − x2s)
2/4 + (y1s − y2s)

2/4,

C = 1 + [x0s cos(θ )/2 + y0s sin(θ )/2] + (x1s + x2s)
2/4 + (y1s + y2s)

2/4,
(25)

D = 1 − [x0s cos(θ )/2 + y0s sin(θ )/2] + (x1s − x2s)
2/4 + (y1s − y2s)

2/4,

E = (
x2

1s − x2
2s

)/
4 + (

y2
1s − y2

2s

)/
4,

F = y0s cos(θ )/2 − x0s sin(θ )/2, G = y2sx1s/2 − x2sy1s/2,

and the noise terms are defined as

dnx+ = (
dnx1 + dnx2

)
/
√

2, dnx− = (
dnx1 − dnx2

)
/
√

2, dny+ = (
dny1 + dny2

)
/
√

2, dny− = (
dny1 − dny2

)
/
√

2, (26)

where

dnx1 = 4

√
x2

0s + y2
0s[dwx1 cos(θ1) − i dwy1 sin(θ1)], dnx2 = 4

√
x2

0s + y2
0s[dwx2 cos(θ2) − i dwy2 sin(θ2)],

(27)
dny1 = −i

4

√
x2

0s + y2
0s[−i dwx1 sin(θ1) + dwy1 cos(θ1)], dny2 = −i

4

√
x2

0s + y2
0s[−i dwx2 sin(θ2) + dwy2 cos(θ2)].

The new Wiener increments in Eq. (27) are expressed by

dwx1(y1)(t) = [dw1(τ ) ± dw+
1 (τ )]/

√
2, dwx2(y2)(τ ) = [dw2(τ ) ± dw+

2 (τ )]/
√

2, (28)

and satisfy the following correlation relations,

〈dwx1dwx2〉 = dτ, 〈dwy1dwy2〉 = dτ, (29)

with all other correlations vanishing. Equation (24) can be used to predict quantum correlation and squeezing in the combined
quadratures, which correspond to the squeezed and antisqueezed combined quadratures obtained in the linearized theory.

V. OUTPUT NOISE SPECTRA AND ENTANGLEMENT

To make a comparison between the theoretical predictions
with the experiment, the quantum noise spectra outside the
cavity should be calculated. We will therefore proceed by
transforming to frequency space via Fourier transform of the
combined field quadratures,

f (�) = (1/
√

2π )
∫ +∞

−∞
dτ e−i�τ f (τ ), (30)

and the white-noise terms,

ξx,y(�) = (1/
√

2π )
∫ +∞

−∞
dτ e−i�τ ξx,y(τ ), (31)

with the correlation,

〈ξa(�)〉 = 0, 〈ξa1(�)ξb2(�′)〉 = δabδ(� + �′). (32)

The first-order stochastic equations in the frequency domain
can be written as

i�x̃+(�) = {−Ax̃+(�) + Ex̃−(�) + F ỹ+(�) + Gỹ−(�)}
+ dñ(�)x+,

i�x̃−(�) = {−Bx̃−(�) + Ex̃+(�) − F ỹ−(�) − Gỹ+(�)}
+ dñ(�)x−,

i�ỹ+(�) = {−Cỹ+(�) + Eỹ−(�) + F x̃+(�) − Gx̃−(�)}
+ dñ(�)y+,
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FIG. 2. Normalized output noise power Vx− and Vy+ as a function
of the relative phase between the pump and the injection seed with
μ0 = 0.8, μ1 = 0.01, and � = 0. (Ia) and (IIa): Vx− , μ2 = 0; (Ib) and
(IIb): Vx− , μ2 = 0.001; (Ic) and (IIc): Vy+ , μ2 = 0; (Id) and (IId): Vy+ ,
μ2 = 0.001. I and II denote the two different ways of injecting the
seed.

i�ỹ−(�) = {−Dỹ−(�) + Eỹ+(�) − F x̃−(�) + Gx̃+(�)}
+ dñ(�)y−, (33)

where

dñ(�)x± = [
dñx1 (�) ± dñx2 (�)

]
/
√

2,

dñ(�)y± = [
dñy1 (�) ± dñy2 (�)

]
/
√

2,

dñx1 (�) = 4

√
x2

0s + y2
0s[ξx1(�) cos(θ1) − iξy1(�) sin(θ1)],

dñx2 (�) = 4

√
x2

0s + y2
0s[ξx2(�) cos(θ2) − iξy2(�) sin(θ2)],

dñy1 (�) = −i
4

√
x2

0s+y2
0s[−iξx1(�) sin(θ1)+ξy1(�) cos(θ1)],

dñy2 (�) = −i
4

√
x2

0s+y2
0s[−iξx2(�) sin(θ2)+ξy2(�) cos(θ2)].

(34)

From Eq. (33) we can obtain the analytical solutions
of x̃+(�), x̃−(�), ỹ+(�), and ỹ−(�). The correlation spec-
trum of the internal (intracavity) combined field quadra-
tures 〈ỹ+(�)ỹ+(�′)〉 and 〈x̃−(�)x̃−(�′)〉 are then calculated
straightforwardly. The external correlation spectrum is ob-
tained in the positive-P representation by the relation,

V out
ij (�)δ(� + �′) = δij + 2

√
γ out

i γ out
j 〈�Xi(�)�Xj (�′)〉P ,

{i,j = y+,x−}, (35)

where 〈�Xi(�)�Xj (�′)〉P is the internal correlation spec-
trum and γ out denotes the cavity mode damping rate due to the
output coupler. To fit our experimental results in Sec. VI, we
choose γ out/γ = 0.55 in the following theoretical analysis.

Figure 2 shows the output noise power of the combined
field quadratures at � = 0. If only the signal field is injected,
the properties of the quantum correlation are the same for both
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FIG. 3. The minimum and maximum values of Vx− and Vy+
versus the injection ratio μ2/μ1 with μ0 = 0.8 and � = 0.

cases of injecting the seed, and the quadrature correlations Vx−
and Vy+ of the output signal and idler fields remain untouched
regardless of the change in the relative phase. When both the
signal and the idler fields are injected, the correlation spectra
start to oscillate periodically versus the relative phase. For the
relative phase of ϕ = π , the injection of the idler can lead
to a little improvement in Vy+ . It is noted that the degree
of the amplitude quadrature correlation is higher than that
of the phase quadrature anticorrelation if the injection field
has a nonzero mean value and they tend to be equal when
μ2/μ0, μ1/μ0 → 0. For the injection field of μ1 = 0.01 and
μ2 = 0.001, the quantum correlations in case I show much
better stability than that in case II when the relative phase
varies.

Figure 3 shows the minimum and maximum values of Vx−
and Vy+ at different injection ratios μ2/μ1. For each injection
ratio, the relative phase is used as the free parameter to find
the desired extreme values. It is evident that optimal squeezing
of Vx− and Vy+ remain almost unchanged at any ratio of the
injected seed. In case I, the worst squeezing of Vx− and Vy+
degrades with the injection ratio quickly, and the squeezing
vanishes at μ2/μ1 ∼ 0.4. Around 3 dB squeezing can be
generated if the injection ratio is limited to μ2/μ1 < 0.13.
In case II, the worst squeezing can exist in a broad range of the
ISR and gradually vanishes at μ2/μ1 ∼ 0.9. Note that even
if the relative phase is free running, over 3 dB of squeezing
can still be obtained given the injection ratio is limited to
μ2/μ1 < 0.7. The observed phenomena denote that if the seed
is injected from the output coupler, the NOPO will allow for
robust generation of two-mode quantum entanglement even if
the relative phase is free running and the ISR is high.

Given the correlation spectrum of the combined quadra-
tures, the quantum entanglement can be evaluated readily
based on the inseparability criterion proposed by Duan
et al. [25]. The entanglement is guaranteed provided that
the correlation spectra of the combined quadratures satisfy
Vx− (�) + Vy+ (�) < 2.
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FIG. 4. Schematic of the experimental setup. Dichroic beam
splitter (DBS) and optical attenuator (ATT).

VI. EXPERIMENT

In order to verify the robustness of the NOPO when the seed
is injected through the output coupler, we design an experiment
shown in Fig. 4. The NOPO with a bow tie configuration is
pumped by a 532-nm laser from two opposite directions [20]
with a pump power of 1.2 times the threshold in one direction
and 0.6 times the threshold in the opposite direction. The main
portion of the 0.8- and 1.5-μm bright down-conversion beams
act as the local oscillator for homodyne detection, and a small
portion of them serves as the seed beam which is injected
through the output coupler of the NOPO below threshold.
To facilitate the fine control of the injection ratio μ2/μ1, a
dichroic beam splitter is employed to separate the signal and
idler, and the intensity of the idler is then adjusted by using
a variable optical attenuator. It is noted that when no seed is
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FIG. 5. Measured amplitude quadrature difference and phase
quadrature sum noise power versus the different injection ratios
μ2/μ1 = 0.15,0.28,0.36,0.46,0.56. The relative phase between the
seed and the pump is scanned from 0 to 2π during the measurement.
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FIG. 6. Amplitude quadrature difference and phase quadrature
sum noise power for injection ratio μ2/μ1 = 0.36. The relative phase
between the seed and the pump is scanned from 0 to 2π . Analysis
frequency: 3 MHz.

injected, there are still very weak signal and idler fields that
can be measured at the output of the NOPO below threshold.
Such residual down-conversion fields are probably due to the
backscattering light of the nonlinear crystal and cavity mirror,
etc.

Figure 5 shows the measured amplitude quadrature dif-
ference and phase quadrature sum noise power versus the
different injection ratios μ2/μ1 at an analysis frequency of
3 MHz. The electronic dark noises of the homodyne detectors
that are around 20 dB below the quantum noise limit are
not subtracted. During the measurement, the relative phase
between the pump and the seed is scanned linearly from 0 to
2π , and the error bars denote the corresponding fluctuations of
the observed quadrature correlation. It can be seen from Fig. 5
that ∼3 dB of entanglement can be generated at the injection
ratio of μ2/μ1 = 0.56 even if the relative phase undergoes
a 2π phase change. Figure 6 displays the noise power of
the amplitude quadrature difference and the phase quadrature
sum as a function of the scanned relative phase between
the seed and the pump at μ2/μ1 = 0.36. The quadrature
correlations Vx− and Vy+ of the output signal and idler fields
remain almost unchanged regardless of the scanning of the
relative phase. The experimental results are inconsistent with
the theoretical analysis.

VII. CONCLUSIONS

To summarize, we have analyzed in detail the effect of
the injected idler-to-signal ratio on the classical and quantum
behaviors of the output fields from a NOPO. Our analysis
shows that the injection of the idler field will inevitably convert
the NOPO from the phase-insensitive region when only the
signal field is injected into the phase-sensitive region where
both the classical mean-field and the quantum correlation
spectra of the combined quadratures vary with the relative
phase between the pump and the seed. There exists a specific
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relative phase (0°) where the entanglement can persist across
a whole range of the injection idler-to-signal ratio and the
degradation of the entanglement is trivial. It is found that if
the seed is injected from the output coupler instead of the
high-reflectivity cavity mirror, a high degree of two-mode
quantum entanglement can still be yielded regardless of
the relative phase even if the injection idler-to-signal ratio
is as high as μ2/μ1 ∼ 0.7. Such a phenomenon is also
verified in experiment. The results we presented can provide
useful guidance for the preparation of two-color continuous

variable quantum entanglement from a NOPO with an injected
seed.
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