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Abstract
We investigate the effect of a degenerate optical parametric amplifier (OPA) placed inside an
optomechanical cavity on the steady-state entanglement of two cavity modes, which jointly interact
with a mechanical resonator. Two cavity modes are, respectively, driven at the red and blue sideband
associated with the mechanical resonator, which generates entanglement between them in the limit of
resolved sideband. The OPA gives rise to single-mode squeezing of the cavity fields, which results in
significant improvement of the two-mode entanglement. It is found that an optimal nonlinear gain of
the OPA exists, depending on the system temperatures, which yields the maximum entanglement.
The improvement is particularly remarkable for the system at cryogenic temperatures.

Keywords: optomechanics, continuous variable entanglement, optical parametric amplifier

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum entanglement is a valuable resource that can be
exploited not only in quantum information processing, e.g.,
performing computation and communication tasks with an
efficiency which is not achievable classically [1], but also in
the study of the quantum-to-classical transition [2, 3], wave-
function collapse theories [4–6], and so on. To date, great
efforts have been made on the demonstration of entanglement
in microscopic systems. However, entanglement in macro-
scopic systems has been less investigated and observed.

Optomechanics, exploring the interaction between light
and mechanical objects via radiation pressure [7], is con-
sidered as an ideal platform to prepare entangled states,
especially of large and massive objects [8]. In the past two

decades, many efforts have been made to prepare entangled
states in cavity optomechanical systems. Basically, they can
be divided into the following kinds: entangled states of cavity
modes [9–14], of a cavity mode and a mechanical mode [15–
17], of mechanical modes [18–26], and of hybrid modes, e.g.,
in atom-optomechanical systems [27–30]. Recently, it has
been shown that, by including an optical parametric amplifier
(OPA) inside the cavity, interesting phenomena would occur.
The OPA is able to enhance optomechanical cooling [31],
optomechanical coupling strength and normal mode splitting
[32]. The enhanced coupling strength makes it even possible
to implement cavity optomechanics in the single-photon
strong coupling regime [33]. The OPA generates squeezing of
the cavity field which can be used to improve the sensitivity
of mechanical quadrature measurements [34], and to prepare
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squeezed states of the mechanical mode [35]. Moreover, it has
been shown that the OPA can also enhance the entanglement
of one cavity mode and one mechanical mode [36], of two
mechanical modes [37], and of multi cavity and mechanical
modes [38].

In the present paper, we provide a protocol to enhance
the stationary continuous variable entanglement between two
cavity modes via placing a degenerate OPA inside an opto-
mechanical cavity, which is comprised of a fixed mirror and a
light movable mirror which acts as a mechanical resonator.
The two cavity modes jointly interact with the mechanical
resonator and by properly choosing the cavity–laser detunings
the two cavity modes can be prepared in an entangled state.
The OPA is used to squeeze the two cavity fields, and as a
result, the entanglement between the two cavity modes can be
significantly enhanced. We focus on the case of entanglement
in steady states. It is found that an optimal nonlinear gain of
the OPA and an optimal phase of the optical field driving the
OPA exist corresponding to the maximum entanglement and
this optimal nonlinear gain becomes smaller as the system
temperature increases. This implies it is not true that larger the
single-mode squeezing corresponds to stronger the two-mode
entanglement. One has to optimize the nonlinear gain of the
OPA so as to get the maximum entanglement at specific
temperatures.

The paper is organized as follows: in section 2 we intro-
duce in detail our model and provide the system Hamiltonian
and its corresponding quantum Langevin equations (QLEs)
after linearization of the system dynamics. In section 3, we
present the results and compare the entanglement of two cavity
modes in the cases with and without inserting an OPA. It
shows that remarkable improvement of the steady-state
entanglement can be achieved with the presence of the gain
medium. Finally, we draw our conclusions in section 4.

2. System Hamiltonian and Langevin equations

As depicted in figure 1, we consider an optical Fabry–Perot
cavity within which a degenerate OPA is placed. One cavity

mirror is fixed and the other one is movable, which is mod-
eled as a quantum mechanical harmonic oscillator with
effective mass m and frequency w .m We consider two optical
modes of the cavity with resonance frequencies ωCj( j=1, 2),
which are, respectively, driven by two lasers with frequencies
w .jL The degenerate OPA is pumped by another two lasers at
frequencies w2 ,jL which is used to generates two squeezed
optical fields at frequencies w .jL We assume that the two
frequencies wL1 and wL2 are very close w w- » D∣ ∣ nL1 L2 C (n
is an integer, e.g., n=10), where

p
D =

c

L
C (c is the speed of

light and L is the cavity length) is the free spectral range of the
cavity. For L∼1 cm, DC is about ∼1011 Hz, which is much
smaller than the optical frequencies. In this case, the two
pump fields interact synchronously and independently with
the OPA and the two nonlinear processes can be considered
identical. The two cavity modes interact via the usual opto-
mechanical interaction with the mechanical resonator. The
Hamiltonian for such a system is given by
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where ai and †ai d= =([ ] )†a a i j, , , 1, 2i j ij are, respec-
tively, the annihilation and creation operators of the cavity
mode with frequency w .Ci q and p =([ ] )q p i, are the
dimensionless position and momentum operators of the
mechanical resonator. w w= ( )g L mi i mC is the single-
photon optomechanical coupling associated with the cavity
mode with frequency w .iC ei is the coupling between the
driving laser and the cavity field, which is related to the pump
power Pi and the cavity decay rate k by e k w= P2 ,i i iL

where k
p

=
c

FL2
with F the cavity finesse. The last term in the

Hamiltonian is the novel part, which denotes the coupling
between the OPA and the two cavity modes. G is the non-
linear gain of the OPA, which is proportional to the power of
the driving field, and q is the phase of the optical field driving
the OPA. Without loss of generality, we have assumed the
nonlinear gain G and the phase q are identical for the two
independent nonlinear processes.

The corresponding nonlinear QLEs, including various
noises entering into the system, in the interaction picture with
respect to w †a a ,i i iL are given by
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Figure 1. Sketch of the system. Two cavity modes are, respectively,
driven by two lasers which simultaneously interact with the movable
mirror via optomechanical interaction. A nonlinear crystal (OPA)
inside the cavity is used to squeeze the cavity fields by optical
parametric process.
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where w w gD = - , m0i Ci Li is the mechanical damping rate,
x is the Langevin force operator accounting for the Brownian
motion of the mirror, which is auto-correlated as [39]
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where kB is the Boltzmann constant and T is the
environmental temperature. ai

in is the input vacuum noise
operator for the cavity, of which the only nonzero
correlation function is

dá ¢ ñ = - ¢( ) ( ) ( ) ( )†a t a t t t . 4i i
in in

Sizeable steady-state entanglement is typically achieved
with sufficiently large optomechanical couplings, which is
realized when the cavity is intensely driven so that the
intracavity field is strong. In this case, it is appropriate to
focus on the linearized dynamics of the quantum fluctuations
around the classical average values. For this purpose, one
can write a d= +a a,s d= +q q qs and d= +p p p,s and
insert them into the QLEs of equation (2). The corresp-
onding average values are obtained by setting the derivatives
to zero, which

are
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where D = D - g q ,1 01 1 s D = D - g q2 02 2 s are the effective
cavity detunings including the frequency shift due to the
interaction with the mechanical resonator. We see that the
presence of the OPA leads to two effects: it modifies the cavity
decay rate k k q - G2 cos and also the effective detunings

qD  D - G2 sin .1,2 1,2 The corresponding QLEs for the
quantum fluctuations of the system, after linearization of the

dynamics around those steady-state values, are given by
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where we have defined the quadrature fluctuation operators of
the cavity modes d d d= +( )†X a a 2 ,i i i d d= -( †Y aii i

d )a 2i and the corresponding input noise operators
= +( )†X a a 2 ,i i i

in in in = -( )†Y a ai 2 .i i i
in in in =Gi

ag2 i si is the effective optomechanical coupling strength,
where we have taken asi real by properly choosing the phase
reference of the cavity fields.

The above QLEs (6) can be rewritten in the following form

= + ( ) ( ) ( ) ( )u t Au t n t , 7

where Td d d d d d=( ) ( )u t q p X Y X Y, , , , ,1 1 2 2 is the vector of
quadrature fluctuation operators, A is the so-called drift matrix,
which takes the form of

and x k=( ) ( ( ) ( )n t t X t0, , 2 ,1
in k k( ) ( )Y t X t2 , 2 ,1

in
2
in

Tk ( ))Y t2 2
in is the vector of noise quadrature operators

associated with the noise terms in equation (6). The system is
stable when all the eigenvalues of the drift matrix A have
negative real parts. Since we are interested in the entangle-
ment of two optical modes in steady-state, all the results
throughout the paper are presented with this stability
condition fulfilled.

Due to the Gaussian nature of the quantum noise terms in
equation (7) and the linearized dynamics, the steady-state
quantum fluctuations of the system is a tripartite Gaussian
state of two optical modes and one mechanical mode, fully
characterized by the 6×6 covariance matrix V with its
entries defined as = á ¥ ¥ + ¥ ¥ ñ( ( ) ( ) ( ) ( ) )V u u u u 2.ij i j j i

The steady-state covariance matrix V can be obtained by
solving the Lyapunov equation

T+ = - ( )AV VA D, 9
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where D is the diffusion matrix, with its entries defined as

dá + ñ = -( ) ( ) ( ) ( ) ( ) ( )n t n s n s n t D t s
1

2
. 10i j j i ij

The diffusion matrix is a diagonal matrix, that is
g k k k k= +[ ( ¯ ) ]D ndiag 0, 2 1 , , , , .m Note that we have

assumed the mechanical resonator is of high quality factor
w g= Q 1,m m which is typically satisfied under the cur-

rent experiment conditions [40]. In this limit, x ( )t becomes
d-correlated, i.e.

x x x x g dá ¢ + ¢ ñ + - ¢( ) ( ) ( ) ( ) ( ¯ ) ( ) ( )t t t t n t t2 2 1 , 11m

with w= - -¯ [ ( ) ]n k Texp 1m B
1 the mean thermal phonon

number, which is assumed to stay at the same environmental
temperature T. This means that the evolution of the
mechanical resonator is a Markovian process.

Once the covariance matrix V is obtained, one can then
calculate the entanglement between the two cavity modes and
we adopt the logarithmic negativity [41], which is defined as

n= - -[ ˜ ] ( )E max 0, ln 2 , 12N

where n = W-̃ ∣ ˜ ∣Vmin eig i c2 ( sW = Å = ij y2 1
2 is the so-called

symplectic matrix, sy is the y-Pauli matrix and Å denotes
direct sum of matrices) is the minimum symplectic eigenvalue
of the covariance matrix =˜ ∣ ∣V P V P ,c c1 2 1 2 with Vc the 4×4
covariance matrix related to the two cavity modes and the

= -( )∣P diag 1, 1, 1, 11 2 is the matrix that inverts the sign
of phase of cavity mode 2, which realizes partial transposition
at the level of covariance matrices [42].

3. Numerical results and discussions

In this section, we present the numerical results of the steady-
state entanglement between two cavity modes focusing on the
effects of the OPA. For such a system without OPA, the
entanglement properties of two cavity modes have been
investigated [12–14]. A judicious choice of detunings is vital
to achieve the two-mode squeezed state of the cavity modes.
Following [12–14], we set wD = m1 and wD = - ,m2 i.e.,
cavity mode 1 (2) is driven at the red (blue) sideband asso-
ciated with the mechanical resonator, and we assume also that
the system is in the resolved sideband limit, i.e.,
w k g  ,m m which requires that the cavity is of high
finesse. Under these conditions, the entanglement of two
cavity modes can be efficiently generated: the two-mode
squeezing interaction driven by the laser at the blue sideband
generates entanglement between the mechanical resonator and
cavity mode 2, and the beam–splitter interaction driven by the
laser at the red sideband then transfers the state of the
mechanical resonator to cavity mode 1. By exchanging the
roles of the cavity modes and the mechanical mode, similar
mechanism can be used to prepare two-mode squeezed states
of two mechanical resonators interacting with one cavity
mode [26].

Figure 2 shows the steady-state entanglement between
two cavity modes as a function of the phase q of the driving
field on the OPA. It shows that the optimal phase for the
entanglement is q p= 2 for q pÎ [ ]0, , while for

q p pÎ [ ], 2 , the system starts to be unstable which we will
not consider. We have employed the following parameters
[15, 43]: the mechanical resonator with effective mass

=m 5 ng, frequency w p =2 10 MHzm and damping rate
g p =2 100 Hz,m the cavity with length =L 5 mm, finesse

=F 105 (corresponding to k = 0.94 MHz), and wavelengths
about 1064 nm, two driving lasers with powers =P 100 mW1

and =P 80 mW,2 and detunings wD =  .m1,2 The OPA is
known to generate squeezing of the optical field and the
degree of squeezing is proportional to the nonlinear gain of
the OPA. This is clearly shown in figure 3, in which we plot
the ratio of the variance of two quadrature fluctuations
d dá ñ á ñX Y1

2
1
2 for cavity mode 1 and d dá ñ á ñY X2

2
2
2 for cavity

mode 2 (the variance denotes noise while the ratio not equal
to 1 reflects squeezing) as a function of the nonlinear gain G.
When G=0, the OPA is not working so that the ratio equal
to 1 corresponding to a thermal state of the cavity field due to
the interaction with the mirror which is in thermal equilibrium

Figure 2. The entanglement of two cavity modes EN as a function of
the phase q for various temperatures and the corresponding optimal
values of the nonlinear gain: =T 10 mK and k=G 5.6 (solid line),
=T 100 mK and k=G 5 (dashed line), =T 1 K and k=G 3

(dotted–dashed line). See text for the other parameters.

Figure 3. d dá ñ á ñX Y1
2

1
2 d dá ñ á ñ( )Y X2

2
2
2 of cavity mode 1 (2) versus

the nonlinear gain G. We take =T 10 mK and q p= 2. The other
parameters are given in text, which correspond to k = 0.94 MHz.
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with the environment. We see that cavity mode 1 is phase
squeezing while mode 2 is amplitude squeezing, and the two
modes have the same degree of squeezing. This is due to the
phase difference of two driving fields on the OPA and the
assumed identical nonlinear gain G. This single-mode
squeezing is helpful to enhance the two-mode entanglement,
as shown in figure 4. We see that the OPA can significantly
enhance the entanglement and the maximum of the entan-
glement with OPA increases by 104% for T = 10 mK, 96%
for T = 100 mK and 55% for T = 1 K compared to the value
without OPA (i.e. when G=0). The entanglement degrades
when the nonlinear gain G takes large values. This can be
explained in the following way: due to the different detunings
Δ1,2 = ±ωm as G grows αs1 increases while αs2 decreases,
leading to large difference between G1 and G2 when G is
large. Since the OPA results in a phase (amplitude) squeezed
cavity mode 1 (2), this implies dX1

2 is (much) larger than
dX2

2 for large G. Due to these two facts, when G is large the
optical noise becomes a significant effective thermal bath for
the mechanical mode (see the second equation in equation (6)
accounting for the mechanical momentum fluctuation), lead-
ing to the degradation of entanglement between two optical
modes. Therefore, an optimal G exists corresponding to
maximum entanglement as a result of the balance between
two effects of the OPA: entanglement enhancement at mod-
erate values of G and entanglement degradation at large
values of G. The enhancement decreases as the temperature
rises and the optimal value of G for the entanglement shows
similar behavior, as shown in figure 5. This means that our
scheme is preferred to work at cryogenic temperatures.

4. Conclusions

We have studied the effect of the OPA on the improvement of
steady-state entanglement between two cavity modes which
jointly interact with a mechanical resonator. The OPA gen-
erates squeezed cavity fields leading to a significant
improvement of the two-mode entanglement, especially for
the system at low temperatures. However, there is no simple

correspondence between the single-mode squeezing and the
two-mode entanglement. An optimal nonlinear gain of the
OPA exists, depending on the system temperatures, which
gives rise to the maximum entanglement. Therefore, the OPA
with a tunable nonlinear gain, realized by adjusting the power
of the driving field, is vital for optimizing the entanglement.
Although the present study is focused on optical entangle-
ment, our protocol can also be applied to enhance the
entanglement between an optical mode and a microwave
mode [11], where the OPA is used to squeeze only the optical
field. We note that, as an alternative, one could consider using
a feedback scheme [44], which can also significantly improve
the entanglement between two optical modes.
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