
Large-scale continuous-variable dual-rail cluster
entangled state based on spatial mode comb

J. ZHANG,1,2,4 J. J. WANG,1,2 R. G. YANG,1,2,4,* K. LIU,1,3,4 AND J.
R. GAO1,2,3,4

1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan
030006, China
2College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
3Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
*yrg@sxu.edu.cn

Abstract: In recent continuous-variable (CV) multipartite entanglement researches, the number
of fully inseparable light modes has been increased dramatically by the introduction of a
multiplexing scheme in either the time domain or the frequency domain. In this paper, we propose
a scheme that a large-scale (≥ 20) CV dual-rail cluster entangled state is established based on
a spatial mode comb in a self-imaging optical parametric oscillator, which is pumped by two
spatial Laguerre-Gaussian modes with different polarization and identical frequency. A sufficient
condition of full inseparability for a CV dual-rail cluster entangled state is used to evaluate the
degree of quantum entanglement. It is shown that entanglement exists over a wide range of
analyzing frequency and pump parameter. We have found a new scheme that uses the optical
parametric cavity to generate a large-scale entanglement based on optical spatial mode comb.
The presented system will be hopefully as a practical entangled source for quantum information.
© 2017 Optical Society of America
OCIS codes: (270.0270) Quantum optics; (190.4410) Nonlinear optics, parametric processes; (270.2500) Fluctuations,
relaxations, and noise.
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1. Introduction

Quantum entanglement is the most important optical resource for quantum computation [1],
quantum dense coding [2] and quantum teleportation [3], which represent the foundations for
construction of a quantum information network. Therefore, research on the multipartite quantum
entanglement has been developed in these years. Some of generation schemes of multipartite
entanglement are based on the coincident nonlinearities [4, 5]. As a special type of multipartite
entanglement, the cluster states has been introduced by Raussendorf via an Ising Hamiltonian [6],
which are less likely to be destroyed by local operations [7]. Additionally, the cluster states
represent an effective way to realize large-scale entanglement. These states could not only speed
up computation using quantum algorithms, but could also be used as a medium for quantum
information transfer in quantum communication protocols. Therefore, research into the generation
of cluster states has become one of the most important research fields today.
To realize usable quantum computation and quantum information processes, large-scale

entanglement, i.e., multipartite entanglement between numerous subsystems, has attracted
considerable focus for operation in either the frequency domain or the time domain [8, 9].
Large-scale entanglement is an interesting topic that lies at the forefront of the current research
and research into such systems has begun in various laboratories. There are two common
approaches that can be used to generate a large-scale cluster entangled state: one is use of a
quantum optical frequency comb and the other is use of an optical spatial mode comb. In 2011,
15 quadripartite entangled cluster states were generated simultaneously over 60 consecutive Q
modes in an optical frequency comb [10]. In another experiment, a cluster state in a quantum
optical frequency comb with more than 60 modes that were entangled and simultaneously
available was achieved [11]. Experimental demonstrations of continuous-variable (CV) cluster
states have included 10,000 time-multiplexed sequentially entangled modes [12]. In 2016, one-
million-mode continuous-variable cluster states by unlimited time-domain multiplexing have
been generated [13]. In addition to this experimental research, we proposed a theoretical scheme
to produce a multiplexed entanglement frequency comb in a nondegenerate optical parametric
amplifier when operating below threshold [14] and obtained a low-frequency signal beyond the
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quantum limit in a nondegenerate optical parametric amplifier via frequency-shift detection using
frequency combs [15]. In 2014, a CV dual-rail cluster state over an optical spatial mode comb
was generated in four-wave-mixing process [16]. In 2016, a scheme for generating CV spatial
cluster entangled states based on optical mode combs via a large-Fresnel-number DOPO was
proposed by us [17]. Other than frequency comb, spatial mode comb is a different new method
for generating cluster entanglement states. Spatial freedom of light is an effective approach to
scale the number of entangled states [18], which can bring new extensions and improvements.
First, small interval of frequency comb depends on FSR of optical cavity, therefore it is difficult
to separate them spatially in experiments. However, spatial separation of spatial modes is relative
simple and efficient, by using spatial modulators. On the other hand, spatial modes are easier to
detect by using Multi-quadrant detectors, CCD, etc. While the detection of the frequency comb
optical field needs preparation of the local light fields with accurate frequency lines and more
measurement times. In addition, such kind of spatial multipartite entanglement will be useful for
future spatial multichannel quantum information application and quantum image transfer.

In this paper, we propose a new scheme to generate a large-scale CV dual-rail cluster entangled
state in a specially designed self-imaging optical parametric oscillator (OPO), which can multiply
the number of entangled modes. The rest of this paper is arranged as follows. In section II, our
theoretical model for generating a large-scale spatial CV dual-rail cluster entangled state of
Laguerre-Gaussian modes is introduced briefly and the evolution equations for the spatial modes
and quadrature fluctuation are deduced. Then, the boundary conditions of the optical cavity are
used to calculate the amplitude and phase quadratures of these spatial modes. In section III, the
entanglement criterion that was proposed by van Loock and Furusawa for full inseparability
of the optical fields [19] is used to estimate whether there is any entanglement among the CV
dual-rail cluster states. Finally, a brief summary of the work is presented in section IV.

2. Theoretical model and derivation of equations

A large-scale CV dual-rail cluster state of the Laguerre-Gaussian modes is generated using
a self-imaging OPO operating below threshold (σ < 1), which is pumped using two spatial
Laguerre-Gaussian modes with the same frequency 2ω0 and different polarizations from two-
ports respectively. As is shown in Fig. 1, two periodically polarized type-zero phase-matching
nonlinear crystals represented by χ(2) are placed within a four-mirror ring cavity. The quasi-
phase-matching crystal between flat mirror 2 and 3 (1 and 4) corresponds to zzz (yyy) parametric
down-conversion (PDC), where the first letter denotes polarization of pump mode and the other
two letters denote polarizations of down-converted modes. The pump fields are denoted by
lgpz

1 , lgpy

−1 , which can generate spatial Laguerre-Gaussian modes lgzs, lgzi and lgys, lg
y
i through

the PDC process respectively, where s, i = ±1,±2,±3 are the azimuthal mode indices, z and y
represent the polarizations of the down-converted modes. Two pump fields with energy ~ωp can
be converted into two fields, signal and idler, with energies of ~ωs and ~ωi are degenerate in
frequency, i.e., ωs = ωi = ω0. To generate a significant effect, the nonlinear interaction must
satisfy the energy (~ωp=~ωs + ~ωi , ωp = 2ω0), momentum (~

−→
k p = ~

−→
k s + ~

−→
k i) and orbit

angular momentum [20](lp~ = ls~ + li~) conservation conditions. Actually the efficiency of zzz
PDC is bigger than yyy PDC for PPKTP crystals, so this four-mirror cavity of dual-port input
and single-port output can be used to control waists and powers of two pump modes separately,
and then the phase-matched efficiency of two crystals can be balanced. Such a cavity is a fully
transverse degenerate one, which implies that all pump and down-converted modes can resonate
simultaneously. From a geometrical point of view, an optical cavity is self-imaging when an
arbitrary ray retraces its own path after a single round trip [21, 22]. The self-imaging ring cavity
requires three lenses of focal length fi , i = 1, 2, 3 and distances ci j of image plane of lens i and
object plane of lens j are given by c1,2 =

f1 f2
f3
, c1,3 =

f1 f3
f2
, c2,3 =

f2 f3
f1
.

A structural diagram of a large-scale CV dual-rail cluster state is shown in Fig.
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Fig. 1. Schematic of experimental setup, the green lines represent pump modes lgpz1 and
lgpy

−1 , and the red lines represent down-converted spatial modes with different polarizations
z and y, which are generated by the pump fields lgpz1 and lgpy

−1 . Two output mode combs
are shown in the dashed box, only one part of the down-converted modes are given, and
intensity profile of the down-converted modes are given below.

2. All the EPR pairs concatenate into the spatial Laguerre-Gaussian mode sequence
(...lg−4, lg3, lg−2, lg1, lg0, lg−1, lg2, lg−3, lg4...) shown in Fig. 2(a) that extends to the optical
spatial mode comb. These spatial modes are connected by the curved arrows shown in Fig. 2(a),
and comprise a large-scale CV dual-rail cluster state after passing through the single beam splitter,
as shown in Fig. 2(b).
Here, the interaction Hamiltonian is:

Ĥ = i~

[ 1−i∑
s

χmb̂pz
1 â†s â†i +

−1−i∑
s

χmb̂py

−1 â†s â†i

]
+ H.C. (1)

where χm, (m = 1 − 5) represents the effective nonlinear coupling parameter for different order
parametric process, b̂pz

1 and b̂py

−1 denote the annihilation operators for the intra-cavity pump
modes, â†s and â†i are the creation operators of the signal and idler modes, respectively.

Here, we only consider two pump modes and twelve down-converted modes for simplicity. In
the ideal case with perfect phase matching and without any detuning, the Langevin equations can
be expressed as follows:

τ Û̂b(z)1 (t) = −γ
(z)
p b̂(z)1 (t) + ε1 − χ1â(z)0 (t) â

(z)
1 (t) − χ2â(z)−1 (t) â

(z)
2 (t) − χ3â(z)−2 (t) â

(z)
3 (t)

+

√
2γ(z)pb

b̂in(z)1 (t) +
√

2γ(z)pc
ĉ(z)
b1
(t) ,

τ Û̂b(y)−1 (t) = −γ
(y)
p b̂(y)−1 (t) + ε−1 − χ1â(y)0 (t) â

(y)
−1 (t) − χ2â(y)1 (t) â

(y)
−2 (t) − χ3â(y)2 (t) â

(y)
−3 (t)

+

√
2γ(y)pb

b̂in(y)−1 (t) +
√

2γ(y)pc
ĉ(y)
b−1
(t) ,

τ Û̂a(z)0 (t) = −γ
(z)
0 â(z)0 (t) + χ1b(z)1 (t) â

†(z)
1 (t) +

√
2γ(z)

b0
âin(z)0 (t) +

√
2γ(z)c0 ĉ(z)0 (t) ,

τ Û̂a(y)0 (t) = −γ
(y)
0 â(y)0 (t) + χ1b(y)−1 (t) â

†(y)
−1 (t) +

√
2γ(y)

b0
âin(y)0 (t) +

√
2γ(y)c0 ĉ(y)0 (t) ,

τ Û̂a(z)1 (t) = −γ
(z)
1 â(z)1 (t) + χ1b(z)1 (t) â

†(z)
0 (t) +

√
2γ(z)

b1
âin(z)1 (t) +

√
2γ(z)c1 ĉ(z)1 (t) ,

τ Û̂a(y)1 (t) = −γ
(y)
1 â(y)1 (t) + χ2b(y)−1 (t) â

†(y)
−2 (t) +

√
2γ(y)

b1
âin(y)1 (t) +

√
2γ(y)c1 ĉ(y)1 (t) ,
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Fig. 2. (a) Structural diagram: the EPR pairs that were generated in the DOPO, the z and
y modes are denoted by the red solid lines and the dashed lines, respectively. The yellow
curved arrows (top) connected the zzz EPR pairs that were generated by the pump lgpz1 and
the yellow curved arrows (bottom) connected the yyy EPR pairs that were generated by
the pump lgpy

−1 ; the vertical arrows denote the pump modes. (b) A large-scale CV dual-rail
cluster entangled state: the initial EPR pairs generated by the OPO (top) turn, after passing
through a single beam splitter (gray ellipses), into a CV dual-rail cluster state (bottom).
Whose ±1/2 weight edges are color coded (contrary to the qubit case, weighted cluster CV
states are still stabilizer states).

τ Û̂a(z)−1 (t) = −γ
(z)
−1 â(z)−1 (t) + χ2b(z)1 (t) â

†(z)
2 (t) +

√
2γ(z)

b−1
âin(z)−1 (t) +

√
2γ(z)c−1 ĉ(z)−1 (t) , (2)

τ Û̂a(y)−1 (t) = −γ
(y)
−1 â(y)−1 (t) + χ1b(y)−1 (t) â

†(y)
0 (t) +

√
2γ(y)

b−1
âin(y)−1 (t) +

√
2γ(y)c−1 ĉ(y)−1 (t) ,

τ Û̂a(z)2 (t) = −γ
(z)
2 â(z)2 (t) + χ2b(z)1 (t) â

†(z)
−1 (t) +

√
2γ(z)

b2
âin(z)2 (t) +

√
2γ(z)c2 ĉ(z)2 (t) ,

τ Û̂a(y)2 (t) = −γ
(y)
2 â(y)2 (t) + χ3b(y)−1 (t) â

†(y)
−3 (t) +

√
2γ(y)

b2
âin(y)2 (t) +

√
2γ(y)c2 ĉ(y)2 (t) ,

τ Û̂a(z)−2 (t) = −γ
(z)
−2 â(z)−2 (t) + χ3b(z)1 (t) â

†(z)
3 (t) +

√
2γ(z)

b−2
âin(z)−2 (t) +

√
2γ(z)c−2 ĉ(z)−2 (t) ,

τ Û̂a(y)−2 (t) = −γ
(y)
−2 â(y)−2 (t) + χ2b(y)−1 (t) â

†(y)
1 (t) +

√
2γ(y)

b−2
âin(y)−2 (t) +

√
2γ(y)c−2 ĉ(y)−2 (t) ,

τ Û̂a(z)3 (t) = −γ
(z)
3 â(z)3 (t) + χ3b(z)1 (t) â

†(z)
−2 (t) +

√
2γ(z)

b3
âin(z)3 (t) +

√
2γ(z)c3 ĉ(z)3 (t) ,

τ Û̂a(y)−3 (t) = −γ
(y)
−3 â(y)−3 (t) + χ3b(y)−1 (t) â

†(y)
2 (t) +

√
2γ(y)

b−3
âin(y)−3 (t) +

√
2γ(y)c−3 ĉ(y)−3 (t) .

where τ is the round-trip time of the optical field inside the DOPO, χ1, χ2 and χ3 are the
effective nonlinear coupling parameters, b̂(z)1 (b̂

(y)
−1 ) and â(z)i (â

(y)
i ) are the amplitude operators

of the pump modes and the down-converted modes inside the cavity, respectively. ε1 and ε−1
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represent the pump fields that enter the cavity, and will be described classically. b̂in(z)i (b̂in(y)i ) and
âin(z)i (âin(y)i ) denote the input amplitude operators of the pump modes and the down-converted
modes, respectively. ĉ(z)

bi
(ĉ(y)

bi
) and ĉ(z)i (ĉ

(y)
i ) are the excess vacuum noise operators of the pump

modes and the down-converted modes, respectively.
To simplify the calculations, suppose that the two pump fields ε1 and ε−1 are identical,

and then the losses of the pump modes are defined as γp = γpb
+ γpc , where γpb

, γpc

correspond to the output losses and the intra-cavity losses for the pump modes. The output
coupling losses and the intra-cavity losses for the down-converted modes are the same, and
are represented by γ

(z)
b0
= γ

(y)
b0
= γ

(z)
b±1
= γ

(y)
b±1
= γ

(z)
b±2
= γ

(y)
b±2
= γ

(z)
b3
= γ

(y)
b−3
= γb and

γ
(z)
c0 = γ

(y)
c0 = γ

(z)
c±1 = γ

(y)
c±1 = γ

(z)
c±2 = γ

(y)
c±2 = γ

(z)
c3 = γ

(y)
c−3 = γc , where the total loss is γ = γb + γc ,

and thus γ(z)0 = γ
(y)
0 = γ

(z)
±1 = γ

(y)
±1 = γ

(z)
±2 = γ

(y)
±3 = γ

(z)
3 = γ

(y)
−3 = γ.

The nonlinear coupling parameter χm is proportional to the overlap integral between the
down-converted modes and the pump modes in the transverse plane, i.e., χm = Γp,i,s χ(2). The
overlap integral is then defined as Γp,s,i =

∫ ∞
−∞ up(⇀r )us(⇀r )ui(⇀r )d⇀r [23], Here, u(r)represent the

expression of the Laguerre-Gaussian modes, u(r) can be simplified in the condition of p=0, the
orbit angular momentum conservation, perfect phase matching and the extremely small gouy
phase. We use us(r), ui(r) as the notation for the fundamental signal and idler mode basis whose
first mode has a waist of ω0, and up(r) for the second harmonic pump mode basis whose first
mode has a waist of ω0

/√
2 [23]. The overlap coefficients are given by Table 1, the nonlinear

coupling parameters are then found to be: χ1 = χ(2), χ2 = 0.707χ(2), and χ3 = 0.433χ(2).

Table 1. The overlap integrals and normalizations of the down-converted modes and pump modes
p1 Γ1,1,0 Γ1,2,−1 Γ1,3,−2 Γ1,4,−3 Γ1,5,−4
p−1 Γ−1,−1,0 Γ−1,−2,1 Γ−1,−3,2 Γ−1,−4,3 Γ−1,−5,4
overlap integral 0.746 0.528 0.323 0.187 0.104
Normalization 1 0.707 0.433 0.250 0.140

By linearization of the operators, b̂(z)1 = β
(z)
1 + δb̂(z)1 , b̂(y)−1 = β

(y)
−1 + δb̂(y)−1 , â(z)i = α

(z)
i + δâ(z)i ,

â(y)i = α
(y)
i + δâ(y)i , âin(z)i = δâin(z)i and âin(y)i = δâin(y)i , (i = 0,±1,±2,±3...), we can obtain the

steady-state equations and quantum fluctuation equations for Eq. (2). By solving the steady-
state equations, the oscillation threshold εth and the pump parameter σ are expressed as
εth = γγp

/
χ1 and σ = ε/εth, respectively. The steady-state solution is given by β(z/y)±1 = ε/γ

and α(z)0 = α
(y)
0 = α

(z)
±1 = α

(y)
±1 = α

(z)
±2 = α

(y)
±2 = α

(z)
3 = α

(y)
−3 = 0. The quantum fluctuation equations

perform a Fourier transformation, we can then obtain the fluctuation dynamics equations. By
applying the definitions of the amplitude and phase quadratures, i.e., X̂ = â+ â† and Ŷ = (â− â†)/i
, the amplitude quadratures of the down-converted spatial modes can then be expressed as follows:
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Mx

©«

δQ̂(z)0 (ω)
δQ̂(z)1 (ω)
δQ̂(z)−1 (ω)
δQ̂(z)2 (ω)
δQ̂(z)−2 (ω)
δQ̂(z)3 (ω)

ª®®®®®®®®®¬
=
√

2γb

©«

δQ̂in(z)
0 (ω)

δQ̂in(z)
1 (ω)

δQ̂in(z)
−1 (ω)

δQ̂in(z)
2 (ω)

δQ̂in(z)
−2 (ω)

δQ̂in(z)
3 (ω)

ª®®®®®®®®®¬
+
√

2γc

©«

δQ̂(z)c0 (ω)
δQ̂(z)c1 (ω)
δQ̂(z)c−1 (ω)
δQ̂(z)c2 (ω)
δQ̂(z)c−2 (ω)
δQ̂(z)c3 (ω)

ª®®®®®®®®®¬
,

My

©«

δQ̂(y)0 (ω)
δQ̂(y)1 (ω)
δQ̂(y)−1 (ω)
δQ̂(y)2 (ω)
δQ̂(y)−2 (ω)
δQ̂(y)3 (ω)

ª®®®®®®®®®¬
=
√

2γb

©«

δQ̂in(y)
0 (ω)

δQ̂in(y)
1 (ω)

δQ̂in(y)
−1 (ω)

δQ̂in(y)
2 (ω)

δQ̂in(y)
−2 (ω)

δQ̂in(y)
3 (ω)

ª®®®®®®®®®¬
+
√

2γc

©«

δQ̂(y)c0 (ω)
δQ̂(y)c1 (ω)
δQ̂(y)c−1 (ω)
δQ̂(y)c2 (ω)
δQ̂(y)c−2 (ω)
δQ̂(y)c3 (ω)

ª®®®®®®®®®¬
.

(3)

Here,

Mx =

©«

iωτ + γ −χ1β
(z)
1 0 0 0 0

−χ1β
(z)
1 iωτ + γ 0 0 0 0

0 0 iωτ + γ −χ2β
(z)
2 0 0

0 0 −χ2β
(z)
2 iωτ + γ 0 0

0 0 0 0 iωτ + γ −χ3β
(z)
3

0 0 0 0 −χ3β
(z)
3 iωτ + γ

ª®®®®®®®®®¬
,

My =

©«

iωτ + γ 0 −χ1β
(y)
−1 0 0 0

0 iωτ + γ 0 0 −χ2β
(y)
−2 0

−χ1β
(y)
−1 0 iωτ + γ 0 0 0

0 0 0 iωτ + γ 0 −χ3β
(y)
−3

0 −χ2β
(y)
−2 0 0 iωτ + γ 0

0 0 0 −χ3β
(y)
−3 0 iωτ + γ

ª®®®®®®®®®¬
.

(4)

The matrix forms of the phase quadratures can be obtained in a similar manner. Using
the boundary conditions [24] of δQ̂out

i =
√

2γbiδQ̂i − δQ̂in
i and δP̂out

i =
√

2γbiδP̂i − δP̂in
i ,

(i = 0,±1,±2,±3...), we can then calculate the amplitude and phase quadratures for the different
polarization modes. The two different polarization modes z and y turn into a CV dual-rail
cluster entangled state after passing through a single 50/50 beam splitter with a relative phase
of π/2 [25]. The resulting output modes (after the beam splitter) are then labeled z′ and
y′, respectively. The beam splitter transformation is given by â(z

′) = 1√
2

(
â(z) + iâ(y)

)
and

â(y
′) = 1√

2

(
â(z) − iâ(y)

)
, and thus the amplitude and phase quadratures of the output modes

are as follows: Q̂(z
′)

i = 1√
2

(
Q̂(z)i − P̂(y)i

)
, P̂(z

′)
i = 1√

2

(
P̂(z)i + Q̂(y)i

)
, Q̂(y

′)
i = 1√

2

(
Q̂(z)i + P̂(y)i

)
,

P̂(y
′)

i = 1√
2

(
P̂(z)i − Q̂(y)i

)
. Based on Eq. (3), the amplitude and phase quadratures of the modes

lg(z
′)

0 , lg(y
′)

0 , lg(z
′)
±1 , lg(y

′)
±1 ... can now be obtained.

3. Sufficient conditions for overall inseparability

The quantum entanglements of the CV dual-rail cluster states are characterized via the correlations
of their amplitude and phase quadratures. Based on the entanglement criterion proposed by van
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Loock and Furusawa for the inseparability [13, 19], we consider the criterion for all possible
separable bipartitions in our set of output modes and obtain sufficient conditions for overall
inseparability:

Qs.i =

〈((
Q̂z′

s + Q̂y′
s

)
−

(
Q̂z′

i + Q̂y′

i

))2
〉
< 1/2, (5)

Ps.i =

〈((
P̂z′
s + P̂y′

s

)
+

(
P̂z′

i + P̂y′

i

))2
〉
< 1/2, (6)

Qs.i =

〈((
Q̂z′

i − Q̂y′

i

)
+

(
Q̂z′

s − Q̂y′
s

))2
〉
< 1/2, (7)

Ps.i =

〈((
P̂z′

i − P̂y′

i

)
−

(
P̂z′
s − P̂y′

s

))2
〉
< 1/2. (8)

s + i = 1 corresponds to Eqs. (5) and (6), whereas s + i = −1 corresponds to Eqs. (7) and (8), and
1/2 is the shot-noise limit. The quantum entanglements of the spatial CV dual-rail cluster states
are vividly illustrated in Fig. 3. The quantum entanglement of Eqs. (5) to (8) can be measured via
two-tone balanced homodyne detection using spatially tailored local oscillator (LO) modes at ω0,
where the quadrature combinations can be fed into a spectrum analyzer that is used to display the
noise power in experiment. Calculations show that the results of Eqs. (5) and (6) [and those of
Eqs. (7) and (8)] are identical.
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Fig. 3. Visualization of quantum entanglements of Eqs. (5) to (8) in the CV dual-rail cluster
states shown in Fig. 2(b).

Figure 4 shows the quantum entanglement of Qi,s

(
Pi,s

)
(i, s = 0, 1, i, s = 0,−1, i, s = −1, 2,

i, s = 1,−2, i, s = −2, 3, i, s = 2,−3, i, s = −3, 4, i, s = 3,−4, i, s = −4, 5, i, s = 4,−5) versus
the normalized analyzing frequency Ω = ωτ/γ. The entanglement decreases gradually with the
normalized analyzing frequency. It satisfies the sufficient conditions for overall inseparability
over a wide range of normalized analyzing frequency when we select the proper pump parameter.
As is shown, the trends of all curves are similar.

Figure 5 shows the quantum entanglement of Qi,s

(
Pi,s

)
(i, s = 0, 1, i, s = 0,−1, i, s = −1, 2,

i, s = 1,−2, i, s = −2, 3, i, s = 2,−3, i, s = −3, 4, i, s = 3,−4, i, s = −4, 5, i, s = 4,−5) versus the
pump parameter σ = ε/εth (which has been normalized with respect to the pump threshold).
The entanglements grow with increasing pump parameter and the largest entanglement can be
obtained near the threshold. This satisfies the sufficient conditions for overall inseparability when
the DOPO is operating below threshold (σ < 1).

As clearly shown in Figs. 4 and 5, the first-order quantum entanglement satisfy the condition
Q0,1 = Q0,−1 because the spatial mode EPR pairs lg(z)0 ∼ lg(z)1 and lg(y)0 ∼ lg(y)−1 correspond
to the same nonlinear coupling parameter χ1, and similarly, Q−1,2 = Q1,−2, Q−2,3 = Q2,−3,
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Fig. 4. Quantum entanglement versus normalized frequency Ω = ωτ/γ with γp = 0.025,
γ = 0.02, γb = 0.018, γc = 0.002, χ1 = χ(2), χ2 = 0.707χ(2), χ3 = 0.433χ(2),
χ4 = 0.250χ(2), χ5 = 0.140χ(2) and σ = 0.8. (I): Q1,0 = Q0,−1 = P1,0 = P0,−1, blue
line; (II): Q2,−1 = Q1,−2 = P2,−1 = P1,−2, red line; (III): Q3,−2 = Q2,−3 = P3,−2 = P2,−3,
purple line; (IV): Q4,−3 = Q3,−4 = P4,−3 = P3,−4, green line; (V): Q5,−4 = Q4,−5 =
P5,−4 = P4,−5, black line.
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Fig. 5. Quantum entanglement versus pump parameterσ = ε/εth with γp = 0.025, γ = 0.02,
γb = 0.018, γc = 0.002, χ1 = χ(2), χ2 = 0.707χ(2), χ3 = 0.433χ(2), χ4 = 0.250χ(2),
χ5 = 0.140χ(2) and Ω = 0.2. (I): Q1,0 = Q0,−1 = P1,0 = P0,−1, blue line; (II): Q2,−1 =
Q1,−2 = P2,−1 = P1,−2, red line; (III): Q3,−2 = Q2,−3 = P3,−2 = P2,−3, purple line; (IV):
Q4,−3 = Q3,−4 = P4,−3 = P3,−4, green line; (V): Q5,−4 = Q4,−5 = P5,−4 = P4,−5, black
line.

Q−3,4 = Q3,−4, Q−4,5 = Q4,−5. Additionally, for the relation of nonlinear coupling parameters:
χ1 > χ2 > χ3 > χ4 > χ5, with the nonlinear coupling parameter decreases gradually, the
quantum entanglement decreases. Therefore the quantum entanglements of Q0,1 and Q0,−1 are
the largest, and the quantum entanglements of Q−4,5 and Q4,−5 are the smallest. We confirm
that at least 20 entangled modes can be generated by considering periodicity of entanglement.
And the squeezing degree of the noise correlation between the different modes is expected to be
detected in experiments, and the squeezing at zero frequency can reach 10.1dB, 9.1dB, 6.2dB,
3.7dB, 2.2dB, respectively.

It should be noted that the weights here are 1/2 and -1/2, because all modes passing through a
single 50/50 beam splitter. Under this condition, the entanglement criterion is satisfied indeed,
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even though it is not optimum.

4. Conclusions

In this work, we proposed a new scheme to generate a large-scale CV dual-rail cluster state of
Laguerre-Gaussian modes based on a spatial mode comb in a self-imaging OPO when operating
below threshold; the scheme can be distinguished from other schemes of the frequency domain
and the time domain. Their constant entanglement versus the normalized analyzing frequency
and the pump parameter can be observed under sufficient conditions for full inseparability. The
dual-rail cluster states of the 20 fully inseparable light modes can be generated using strong pump
power, a high χ(2) and a higher Γp,i,s. If we can achieve the following conditions, e.g., perfect
mode-matching, alignment of the interactional modes and special transverse pump structure, a
larger parametric interaction and a larger-scale entanglement (i.e., more than 20 spatial modes)
will be realized. This scheme can pave a new way to generate large-scale CV cluster entangled
states using spatial mode combs, which can then be applied extensively in the fields of the
quantum computing, and the relevance of continuous variables for cluster states is also important
to universal quantum computing because of potential for scalability and a fault tolerance [11, 26].
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