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Abstract: Nonclassical beams in high order spatial modes have attracted much interest but
they exhibit much less squeezing and entanglement than the fundamental spatial modes, limit-
ing their applications. We experimentally demonstrate the relation between pump modes and
entanglement of first-order Hermite Gauss modes (HG10 entangled states) in a type II OPO and
show that the maximum entanglement of high order spatial modes can be obtained by optimiz-
ing the pump spatial mode. To our knowledge, this is the first time to report this. Utilizing the
optimal pump mode, the HG10 mode threshold can be reached easily without HG00 oscillation
and HG10 entanglement is enhanced by 53.5% over HG00 pumping. The technique is broadly
applicable to entanglement generation in high order modes.
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1. Introduction

Continuous variable (CV) squeezed and entangled states are important in processes such as
quantum computation, quantum communication and quantum metrology. Since the 1985 obser-
vation of CV squeezing by Slusher et al. [1], much research has followed on the generation
and optimization of squeezing and entanglement in different systems. These include the optical
parametric oscillator (OPO) [2, 3], four-wave mixing (FWM) [1], and the in-fiber optical Kerr
effect [4,5]. Among these tools, the OPO is the most widely used. In recent years, squeezing of
up to 15 dB in type I OPOs [6] and entanglement of 8.4 dB in type II OPOs [7] were realized.

Traditionally most OPOs operate in the fundamental mode. However, higher order modes
such as Hermite-Gauss (HG) and Laguerre-Gauss (LG) modes contain more spatial degrees
of freedom and can give more information in applications than the fundamental mode. They
can be used to enhance measurement precision of some physical quantities, such as lateral dis-
placement [8] and transverse rotation angle of an optical beam [9]. They can also be applied in
quantum imaging [10], quantum storage [11], quantum super-dense coding [12], and biological
measurement [13]. In recent years, squeezing and entanglement have been expanded to higher
order modes in OPOs. Lassen et al. generated quadrature squeezing of HG00, HG10 and HG20

modes separately with a type I OPO in 2006 [14,15] and quadrature entanglement of first-order
LG modes with a type I OPO in 2009 [16]. Multimode squeezing and entanglement can also
be generated in a specially designed OPO [17–19]. Recently, a CV hyperentanglement state,
wherein both spin and orbital angular momenta are entangled, was realized in a multimode type
II OPO [20,21].

To date the degree of squeezing and entanglement produced in higher order modes has been
much lower than for the fundamental mode, which limits their applications. Almost all the above
cited work adopted the fundamental mode as the pump for the higher order signal modes. This
lead to low pump conversion efficiencies and crucially much higher oscillation thresholds than
for the fundamental spatial mode, severely limiting the attainable squeezing and entanglement
levels.

Lassen et al. presented the ideal pump for oscillation of the HG10 mode, a superposition
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of HG00 and HG20 modes, but synthesizing the multi-mode is experimentally very challeng-
ing [14–16]. In this Express paper, we experimentally demonstrate the relation between pump
modes and entanglement of first-order HG modes (HG10 entangled states) in a type II OPO and
show that the maximum entanglement of high order spatial modes can be obtained by optimiz-
ing the pump spatial mode. To our knowledge, this is the first time to report this. Using the
optimal pump, the entanglement inseparability for HG10 mode is enhanced by 53.5% and the
threshold is reduced by 66.7% relative to using HG00 in our result.

2. Theoretical model

For a type II OPO with an HG10 signal mode, we define vp (�r) as the transverse distribution of
the pump mode where �r = (x , y) denotes the transverse coordinates. This can be expanded into
a series of HG modes as

vp (�r) =
∞∑

n=0

cnvn0(�r), (1)

where vn0(�r) denotes the transverse profile of the nth order HG mode and cn is its corresponding
coefficient. The transverse profiles of the signal and idler modes can be described by us (�r) and
ui (�r) . The full Hamiltonian of the system can be written as

Ĥ = i�εp
(
âp† − âp

)
+ i�χΓ

(
âp âs† âi† − âp† âs âi

)
, (2)

where χ is the nonlinear coefficient of the crystal, âp , âs and âi are the annihilation operators
of the pump, signal and idler fields, and εp is the pump parameter. Γ is the coupling coefficient
of the three intracavity fields given by

Γ=

∫ +∞

−∞
vp (�r) us∗ (�r) ui∗ (�r) d�r . (3)

Additionally considering the quantum vacuum noise caused by the extra losses, the quantum
Langevin equations of motion for the intracavity fields can be given by

τ ˙̂ap (t) = −γp âp (t) − χΓâs (t) âi (t) + εpe−iθp +

√
2μp b̂p

in
(t) (4a)

τ ˙̂as (t) = −γ′
s âs (t) + χΓâp (t) âi† (t) +

√
2γs âs

in (t) +
√

2μs b̂s
in (t) (4b)

τ ˙̂ai (t) = −γ′
i âi (t) + χΓâp (t) âs† (t) +

√
2γi â

i
in (t) +

√
2μi b̂

i
in (t) . (4c)

Here γk (k = p, s, i) are the transmission losses through the output coupler and μk are all
other extra losses, γ′

k
= γk + μk (k = s, i) are the total losses. τ is the round-trip time of the

three modes in the cavity, θp is the phase of the pump field, âl
in

(t) (l = s, i) are the input
signal and idler fields, and b̂m

in
(t) (m = p, s, i) are the quantum vacuum noise of the three fields

induced by the extra losses. Assuming the loss factors γp = 1, γs = γi = γ, μs = μi = μ and
γ′

s = γ′
i
= γ′, then the oscillation threshold is obtained as

εpth = γ′/( χΓ). (5)
〈
âl

in

〉
= αl

in
e−iθl (l = s, i), where θl are the phases of the input signal and idler fields. We

introduce the amplitude quadrature X̂ =
(
â + â†) /2 and phase quadrature Ŷ = −i

(
â − â†) /2.

When the relative phase between the pump and the seed ϕ = θp − (θs + θi ) = 0, the system is
in a parametric amplification state, and the correlation noise spectra can be given by

VX̂ s − X̂ i = VŶ s+Ŷ i = 1 − ηesc

4σ

(1 + σ)2 +Ω2
, (6)
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where ηesc = γ/γ′ is the escape efficiency, σ = εp/εpth is the normalized pump parameter,
and Ω = ωτ/γ′ is the normalized analyzing frequency. When the relative phase between the
pump and the seed ϕ = θp − (θs + θi ) = π, the system is in a parametric deamplification state,
and the correlation noise spectra can be given by

VX̂ s+X̂ i = VŶ s −Ŷ i = 1 − ηesc

4σ

(1 + σ)2 +Ω2
, (7)

Considering the total detection efficiency of the system, ηdet , Eq. (7) can be rewritten as

VX̂ s+X̂ i = VŶ s −Ŷ i = 1 − ηdetηesc

4
√

p/pth
(
1 +
√

p/pth

)2
+Ω2

, (8)

where ηdet = ηpropηhdηphot , ηprop is the propagation efficiency, ηhd is the homodyne detec-
tion efficiency and ηphot is the quantum efficiency of the photodiode. The normalized pump
power is given by p/pth = σ2, where p is the actual pump power and pth = γ′2/ (χ2Γ2

)
is the

threshold pump power.
The inseparability criterion can be expressed as [22]

V = VX s+X i + VY s −Y i = 2 − ηdetηesc

8
√

p/pth
(
1 +
√

p/pth

)2
+Ω2

< 2. (9)

From Eqs. (3)–(5), different pump modes correspond to different coupling coefficients and
thus different nonlinear efficiencies, leading to different pump thresholds. The coupling coeffi-
cient for the HG00 signal mode u00

(
�r
)

with HG00 pump mode is

Γ=

∫ +∞

−∞
v00
(
�r
) [

u00
(
�r
)]2 d�r = 1, (10)

so the oscillation threshold for the HG00 signal mode with HG00 pump is p00→00
th

=

γ′2/ (χ2Γ2
)
= γ′2/ χ2. For the HG10 signal mode u10

(
�r
)

generation with all possible pump,
we have the expression from Eq. (1)

Γ=

∞∑

n=0

cn

∫ +∞

−∞
vn0
(
�r
) [

u10
(
�r
)]2

d�r =
∞∑

n=0

cnΓn , (11)

where Γn =
∫ +∞

−∞ vn0
(
�r
) [

u10
(
�r
)]2 d�r denotes the coupling coefficient of the nth order HG

pump mode. These are

Γ0 =

∫ +∞

−∞
v00
(
�r
) [

u10
(
�r
)]2 d�r = 1/2, (12)

Γ2 =

∫ +∞

−∞
v20
(
�r
) [

u10
(
�r
)]2 d�r = 1

/√
2, (13)

and Γn = 0 for all other n. The HG10 signal mode threshold with an HG00 pump mode (c0 = 1)
is p00→10

th
= γ′2/ (χ2Γ2

0

)
= 4γ′2/ χ2, and with an HG20 pump mode (c2 = 1) it is p20→10

th
=

γ′2/ (χ2Γ2
2

)
= 2γ′2/ χ2.

For the optimal pump mode, Γ = c0Γ0 + c2Γ2 = (1/2) c0 +
(
1
/√

2
)

c2, and c2
0 + c2

2 = 1. The

maximum value of Γ is
√

3
/
2, with c0 =

√
1/3 and c2 =

√
2/3, so the optimal pump mode is

vp =
√

1/3v00 +
√

2/3v20, a superposition of HG00 and HG20 modes. The HG10 signal mode
threshold with the optimal pump mode is popt→10

th
= γ′2/ (χ2Γ2

)
= 4γ′2/3 χ2.
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Fig. 1. Theoretical inseparabilities V against normalized pump power p/p00→00
th

for three
pump modes, HG00 (blue solid line), HG20 (green dashed line) and the optimal pump mode
HGopt (red dotted line) under ideal conditions. The parameters are ηdet = 1, ηesc = 1,
Ω = 0.

Figure 1 gives the theoretical curves of the inseparabilities versus normalized pump power
for the three different pump modes HG00, HG20, and the optimal superposition under ideal
conditions. Under HG00 pumping, the HG00 signal mode threshold is p00→00

th
, which is one-

quarter that of the HG10 signal mode p00→10
th

= 4p00→00
th

. When the pump power reaches the
HG00 threshold p00→00

th
, the system starts to oscillate in the HG00 mode, so the maximum HG10

entanglement cannot be obtained. However, with HG20 pumping, the HG00 signal mode will
not be excited. The HG10 signal mode threshold p20→10

th
= 2p00→00

th
can be reached with enough

pump power in theory, so the maximum HG10 entanglement can be obtained using an HG20

pump. With optimal superposition mode pumping, the HG00 pump mode comprises 1/3 the
total pump power. The threshold for the HG10 signal mode is popt→10

th
= 4p00→00

th

/
3. Hence the

maximum power of the HG00 component of the pump is 4p00→00
th

/
9, which is much smaller than

the HG00 signal mode threshold p00→00
th

. The HG00 signal mode will therefore not oscillate in
under optimal mode pumping. Moreover, since the HG10 signal mode threshold is much lower
than for pure HG20 pumping, the maximum entanglement can be obtained at lower pump power.

3. Experiment

The experimental setup is depicted in Fig. 2. A continuous wave all solid state laser source
emits both infrared at 1080 nm and green light at 540 nm. The infrared beam passes through a
mode converter (MC1), which converts the HG00 mode into the HG10 mode. A part of the HG10

mode is injected into a non-degenerate optical parametric amplifier (NOPA) as the seed beam,
and the rest of it is used as the local oscillator for homodyne detection. The green beam is used
as the pump beam. It is split into two, one beam pass through the mode converter MC2, which
converts HG00 mode into HG20 mode, the other beam is still HG00 mode, then the two beams
are combined by a beam splitter, generating the superposition pump mode. By this arrangement,
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Fig. 2. Schematic of the experimental setup. NOPA: non-degenerate optical parametric am-
plifier, KTP: type II KTP crystal, M1 and M2: cavity mirrors, BS: beam splitter, PBS: po-
larizing beam splitter, MCs: mode converters, SG: signal generator, Servo: servo amplifier
circuit for feedback system, PZTs: piezoelectric transducers, DBS: dichroic beam splitter,
Local: local oscillator, BHDs: balanced homodyne detectors, +/-: positive/negative power
combiner, and SA: spectrum analyzer.

we can choose to pass either the HG00, the HG20, or the superposition pump mode.
To lock the relative phase between the HG00 and HG20 modes, we use an iris aperture to

pass only the center of the beam profile to a photodiode. With a lock-in amplifier, the relative
phase is locked to zero. The mode converters and the NOPA cavity are locked using the standard
Pound-Drever-Hall (PDH) technique [23].

The NOPA cavity consists of two 30 mm radius of curvature plano-concave mirrors and a
3 × 3 × 10 mm3 type II KTP crystal in the center. The seed beam input mirror M1 is highly
reflective (R>99.95%) at both 1080 nm and 540 nm. The transmittance T of the output coupler
M2 is 6% at 1080 nm and T>95% at 540 nm. The cavity is nearly concentric with a length
of 62.5 mm and has a waist of 41 μm in the infrared and 29 μm in the green. The NOPA has
a finesse of 84 for the signal beam with a free spectral range of 2.4 GHz and a bandwidth of
28 MHz. We lock the relative phase between the seed and the pump beam in the parametric
deamplification regime with PZT2.

The NOPA output beams and the green beam pass through a dichroic beam splitter (DBS),
which reflects only the infrared beam to be measured. This is divided into two parts by a PBS.
They are detected by two balanced homodyne detectors (BHDs). The photocurrents from the
two BHDs feed a positive/negative combiner (+/-), and those outputs are recorded by a spectrum
analyzer (SA). The correlation noise spectra of the amplitude sum and phase difference of the
signal and idler beams are measured by scanning the phase of the local infrared beam using a
mirror mounted on piezoelectric transducer PZT3.
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4. Experimental results

The experimental parameters in our experiment are as follows. The analyzing frequency is 5
MHz, the resolution bandwidth (RBW) is 300 kHz, and the video bandwidth (VBW) is 1 kHz.
The bandwidth of the NOPA is 28 MHz (from which Ω = 5 MHz/28 MHz = 0.18). The various
efficiencies are ηprop = 0.89±0.02, ηphot = 0.90±0.01, ηhd = 0.81±0.02, and ηesc = 0.79±0.01,
thus the total efficiency ηtotal = 0.51±0.04. The pump threshold for the HG00 signal mode with
an HG00 pump is p00→00

th
= 510 mW. From theoretical prediction, the oscillation threshold for

the HG10 signal mode is p00→10
th

= 2.04 W with HG00 pumping, it is p20→10
th

= 1.02 W with

HG20 pumping, and with the optimal superposition mode pumping popt→10
th

= 680 mW.
The measured entanglement inseparabilities V are plotted against the normalized pump power

p/p00→00
th

for the three different pump modes in Fig. 3. The corresponding theoretical curves in
experimental conditions are also depicted.

Fig. 3. The inseparabilities V versus normalized pump power p/p00→00
th

, where p00→00
th

= 510 mW. Data points from the experiment are blue squares for HG00 pumping, green
circles for HG20 pumping and red triangles for the optimal pump mode HGopt. The solid
curves are the theoretical values in experimental conditions for the three pump modes.

From Fig. 3, the entanglement increases with the increasing pump power for the three pump
modes and there is good agreement between theory and experiment. At a given pump power,
the optimal pump mode HGopt outperforms the other two modes and the HG20 pump mode
outperforms HG00. However, the minimum value of V is not close to zero as Fig. 1 due to
the nonideal cavity and detection system. The maximum pump power for HG00 mode in our
experiment is 500 mW, since the oscillating threshold of the HG00 signal mode is 510 mW,
at higher power, the OPO will oscillate on the HG00 mode, so the maximum entanglement of
HG10 mode can not be obtained with HG00 pump mode. However, with HG20 pump mode or
the optimal pump mode HGopt, the maximum entanglement of HG10 mode can be obtained.
Moreover, with the optimal pump mode HGopt, the maximum entanglement can be obtained at
lower pump power compared with HG20 pumping.

Figure 4 gives the HG10 mode correlation noise spectra with the three different pump modes.
For HG00 pumping at 500 mW, the amplitude sum squeezing was 2.36±0.07 dB and the phase
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Fig. 4. The HG10 mode correlation noise powers for the amplitude sum VX s+X i (a1-a3)
and the phase difference VY s −Y i (b1-b3). The top row was taken using 500 mW of HG00
pumping, the middle row with 670 mW of HG20 pumping, and the bottom row with 670
mW of the superposition HGopt pumping.

difference squeezing was 2.56±0.06 dB. For HG20 pumping at 670 mW these were 2.92±0.08
dB and 2.76±0.10 dB. For HGopt pumping at 670 mW, the squeezings were 3.28±0.18 dB and
2.92±0.15 dB. Here in our experiment, the noise spectra were recorded in dB units, they can
also be expressed in percentage form through the relation [3]

V (dB) = 10 log10 V (per) (14)

where V(dB) denotes the noise spectra in dB units, V(per) denotes the noise spectra in per-
centage form, then for HG00 pumping the amplitude sum squeezing in percentage form is
V 00

X s+X i = 0.58 ± 0.01 and the phase difference squeezing is V00
Y s −Y i = 0.55 ± 0.01. Similarly,

for HG20 pumping at 670 mW, the amplitude sum and phase difference squeezings in percent-
age forms are 0.51 ± 0.01 and 0.53 ± 0.01. For HGopt pumping at 670 mW, the squeezings
in percentage forms are 0.47 ± 0.02 and 0.51 ± 0.02. According to the inseperability criterion
proposed by Duan et al [22] with the percentage forms of the noise spectra mentioned above,
the entanglement inseparabilities for HG10 mode with the three pump modes are obtained as

V 00
X s+X i + V 00

Y s −Y i = 1.13 ± 0.02 < 2, (15)

V 20
X s+X i + V 20

Y s −Y i = 1.04 ± 0.02 < 2, (16)

V opt

X s+X i + V opt

Y s −Y i = 0.98 ± 0.04 < 2. (17)

They are in well agreement with Fig. 3. Considering the total detection efficiency ηdet =

ηpropηphot ηhd = 0.65 ± 0.04, the inseparabilities of Eqs. (15)–(17) become 0.66±0.03,
0.52±0.03 and 0.43±0.06. Compared with HG00 pumping, the inseperability is enhanced by
η = 53.5% using the optimal pump mode.
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Summarizing the experimental results, we cannot obtain the maximum entanglement of the
HG10 mode with HG00 pumping because of the low HG00 threshold. With HG20 pumping, this
is not the case. Theoretically, the HG10 signal mode threshold can be reached and the maximum
entanglement can be obtained, but in our experiment the laser-limited pump power is insuffi-
cient. With the optimal pump mode, the HG10 signal mode threshold is lower and the maximum
entanglement can be obtained with lower pump power. Experimentally however, generating the
optimal pump mode is relatively complicated and somewhat difficult. Using HG20 pumping is
operationally much easier and with sufficient power we can obtain the same degree of entangle-
ment as the optimal pump mode.

5. Conclusion

We experimentally studied HG10 mode entanglement in a type II OPO with three pump modes,
HG00, HG20, and a superposition of the two modes. The superposition mode, a one-third HG00

and two-thirds HG20 combination, is theoretically optimal and experimentally shown to be able
to obtain a higher entanglement at lower pump power. The experimental results match the the-
oretical prediction very well. The degree of entanglement is still relatively low resulting from
extra losses and various inefficiencies in our experiment. The technique holds promise to obtain
more than 10 dB squeezing for applications in quantum imaging [24, 25]. It is an efficient way
to improve the squeezing of high-order spatial modes. Moreover, the method can be extended
to high-dimension orbital angular momentum entanglement [26–28] to enhance the generation
efficiency.
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