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Enhanced entanglement of two different mechanical resonators via coherent feedback
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It was shown [New J. Phys. 17, 103037 (2015)] that large and robust entanglement between two different
mechanical resonators could be achieved, either dynamically or in the steady state, in an optomechanical system
in which the two mechanical resonators are coupled to a single cavity mode driven by a suitably chosen two-tone
field. An important limitation of the scheme is that the cavity decay rate must be much smaller than the two
mechanical frequencies and their difference. Here we show that the entanglement can be remarkably enhanced,
and the validity of the scheme can be largely extended, by adding a coherent feedback loop that effectively
reduces the cavity decay rate.
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I. INTRODUCTION

The possibility of observing entangled states of macro-
scopic, massive objects is relevant to research related, for
example, to the study of the quantum-to-classical transi-
tion [1,2], of wave-function collapse theories [3–5] and of
gravitational quantum physics [6]. However, the preparation
of entanglement between massive objects is hindered by
environmental noises which become hardly controllable for
large-scale systems. Besides, it is suggested that gravita-
tionally induced decoherence [7] may also play a role in
degrading the superposition and entanglement of massive
objects. Recently, it has been shown that self-gravity of
a macroscopic mechanical object may affect the quantum
dynamics of its center-of-mass motion [8–10], and, as a result,
it may affect the entanglement of the motional states of two
or more large objects. The ability to generate entanglement
of massive objects can, therefore, be extremely useful in
designing tests of these fundamental theories.

At the mesoscopic level, entanglement has been demon-
strated in various systems: e.g., in two atomic ensembles
[11], in two Josephson-junction qubits [12,13], and in an elec-
tromechanical system [14]. However, entanglement between
two mechanical resonators (MRs) has been demonstrated
only at the microscopic level, in the case of two trapped
ions [15], and between two single-phonon excitations in
nanodiamonds [16]. Optomechanics, addressing the coupling
of optical and mechanical degrees of freedom via radiation
pressure, provides an ideal platform to prepare quantum
states in mechanical systems [17]. Many schemes, which use
optomechanical and/or electromechanical systems, have been
put forward for the generation of entanglement between two
MRs. They exploit, for example, radiation pressure [18–21],
the transfer of entanglement [22–24] and squeezing [25]
from optical fields, conditional measurements on light modes
[26–31], mechanical nonlinearities [32], and parametric driv-
ings [33]. Recently, reservoir engineering ideas [34–38]
have been applied to optomechanical scenarios by exploiting
properly chosen multifrequency drivings [39–47] in order to
achieve robust entanglement. Similar ideas have been used to

generate entangled pairs of MRs in a harmonic chain [48] and
cluster states of a large number of MRs [49].

In this paper, we aim to further improve the results obtained
in the scheme [45] by introducing a coherent feedback loop
[50–55]. Unlike the conventional measurement-based feed-
back [56–59], the non-measurement-based, hence backaction-
free, coherent feedback shows advantages in many aspects,
e.g., in cooling [60] and suppressing noises [61] of MRs,
squeezing optical field [62–67], entangling optical modes
[68–70] and quantum networks [71], engineering nonlinear
effects [72], and so on. Here we apply these ideas to the
preparation of entanglement between two macroscopic MRs.

The scheme [45] is similar to the one discussed in Ref. [42].
However, the former is more compact and experimentally
friendly in the sense that a four-tone driving is not required for
the most general case of unequal optomechanical couplings
[42]. The protocol [45] works optimally in a rotating-wave
approximation (RWA) regime where counter-rotating, nonres-
onant terms are negligible. This requires that the cavity decay
rate κ be much smaller than the two mechanical frequencies
ω1,2 and their difference |ω1 − ω2|, i.e., κ � ω1,2,|ω1 − ω2|.
This may limit the applicability of the scheme [45] because
typically the frequency of mechanical systems is not large. We
show that by including coherent feedback, in which a portion of
the cavity output field is returned to the input port, the effective
cavity decay rate can be significantly reduced, hence relaxing
the conditions of validity of the scheme, and the entanglement
can be strongly enhanced. The scheme can be optimized by
controlling how much of the output light is sent back into the
input port. This can be done using, for example, a controllable
beam splitter (CBS) [63,64,67,68]. In fact, we will show that
there exist optimal values of the reflectivity of the beam splitter,
of the light phase shift in the feedback loop, and of the ratio of
two effective optomechanical couplings G1,2, which yield the
maximum entanglement.

The paper is organized as follows. In Sec. II we first
provide the system Hamiltonian and its corresponding quan-
tum Langevin equations (QLEs) without coherent feedback
and introduce some relevant background information already
discussed in Ref. [45]. We then include the feedback loop
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FIG. 1. Sketch of the system with the coherent feedback loop. The
output field of the cavity is fed back into the input port through highly
reflective mirrors (HRM) and a controllable beam splitter (CBS) with
tunable reflection coefficient rB . ain

1 and ain
2 denote vacuum noises

entering into the system through the CBS and the output cavity mirror,
respectively.

and derive the modified QLEs in Sec. III. In Sec. IV, we
present the results, and finally we make our conclusions in
Sec. V.

II. THE SYSTEM WITH NO FEEDBACK

We study two MRs, with frequencies ω1 and ω2, which
interact with a mode of an optical cavity at frequency ωc. The
cavity is bichromatically driven at the two frequencies ωL1 =
ω0 + ω1 and ωL2 = ω0 − ω2, and the reference frequency ω0 is
slightly detuned from the cavity resonance by �0 = ωc − ω0.
This means that the cavity mode is simultaneously driven close
to the blue sideband associated with the MR with frequency
ω1, and close to the red sideband associated with the MR with
frequency ω2. The system Hamiltonian, in a reference frame
rotating at the frequency ω0, is given by

Ĥ = h̄�0â
†â + h̄

2∑
j=1

ωj b̂
†
j b̂j + h̄

2∑
j=1

gj â
†â(b̂j + b̂

†
j )

+ h̄[(E1e
−iω1t + E2e

iω2t )â† + H.c.], (1)

where â and b̂1,2 are the annihilation operators of the cavity
mode and the mechanical modes, respectively, gj is the single-
photon optomechanical coupling to the j th MR, and Ej is the
coupling between the driving laser and the cavity field, which
is related to the pump power Pj and the cavity decay rate κ1

by Ej = √
2Pjκ1/h̄ωLj , where κ1 and κ2 are, respectively, the

cavity decay rates due to the transmission through the two
cavity mirrors (see Fig. 1).

The system dynamics can be effectively studied by lin-
earizing the optomechanical interaction under the assumption
of sufficiently strong pump fields. In this case, the average
fields for both the cavity, α(t), and the mechanical degrees of
freedom, βj (t), are large, and one can simplify the interaction
Hamiltonian at the lowest order in the field fluctuations
δâ(t) = â(t) − α(t) and δb̂j (t) = b̂j (t) − βj (t) [45]. Unlike
the standard approach used in the analysis of optomechanical
systems [17], here the average fields are time dependent as a
result of the bichromatic driving field. However, approximated

time-independent equations for the system dynamics can be
derived by focusing only on the dominant resonant processes
(the detailed study of this derivation and the numerical analysis
of its validity can be found in Ref. [45]). In particular, it
is possible to neglect the nonresonant processes under the
assumption [45]∣∣∣∣gj

Ej

ωj

∣∣∣∣, κ1,2 � ω1,2, |ω1 − ω2|. (2)

We remark that the condition in Eq. (2) requires significantly
different mechanical frequencies in order to suppress specific
optomechanical processes which would otherwise inhibit the
proper operation of the scheme [45]. When these conditions
are fulfilled, the system without feedback can be described by
the following set of QLEs which, in the interaction picture with
respect to the Hamiltonian Ĥ0 = h̄

∑2
j=1 ωj b̂

†
j b̂j , are given by

[45]

δ ˙̂a = −(κ1+κ2+i�)δâ − iG1δb̂
†
1 − iG2δb̂2+

2∑
i=1

√
2κi â

in
i ,

(3)

δ ˙̂b1 = −γ1

2
δb̂1 − iG1δâ

† + √
γ1b̂

in
1 , (4)

δ ˙̂b2 = −γ2

2
δb̂2 − iG∗

2δâ + √
γ2b̂

in
2 , (5)

where γ1 and γ2 are the damping rates of the two mechanical
modes, the detuning � includes the optomechanical light-
shift [45], G1 and G2 are the (generally complex) effective
optomechanical couplings, given by

G1 = g1 E1

ω1 − � + i(κ1 + κ2)
,

G2 = g2 E2

−ω2 − � + i(κ1 + κ2)
, (6)

and âin
i , b̂in

j are the system input noise operators.
Specifically âin

1 and âin
2 are the input noise fields en-

tering the two cavity mirrors, and b̂in
j describe the

noise of the two MRs. Their nonzero correlation
functions are 〈âin

i (t) âin
i (t ′)†〉 = δ(t−t ′), 〈b̂in

j (t) b̂in
j (t ′)†〉 =

(n̄j+1)δ(t − t ′) and 〈b̂in
j (t)† b̂in

j (t ′)〉 = n̄j δ(t−t ′), with n̄j =
[exp (h̄ωj/kBT ) − 1]−1 the mean thermal phonon number of
the j th MR, at the environmental temperature T .

These equations describe the interaction of the cavity
mode with a Bogoliubov collective mode of the MRs with
annihilation operator

B̂ = G2δb̂2 + G1δb̂
†
1

G
, (7)

where G =
√

|G2|2 − |G1|2 enters here as a normalization
factor and is equal to the actual coupling between optical
and mechanical modes [45]: In fact, the effective Hamiltonian
corresponding to Eqs. (3)–(5) can be written as Ĥeff/h̄ =
�δâ†δâ + G(B̂†δâ + B̂ δâ†). The orthogonal collective me-
chanical mode, given by (G2δb̂1 + G1δb̂

†
2)/G, remains, in-

stead, decoupled from the cavity field. Correspondingly
these equations describe the exchange of excitations between
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the mechanical mode B̂ and the optical cavity which are
eventually lost by cavity decay, hence inducing the cooling
of the Bogoliubov mode. In particular, the expression for the
Bogoliubov mode is meaningful only for G2 > G1. This is a
sufficient condition for the stability of the system (i.e., under
this condition the system approaches a steady state) [45]. It
corresponds to a situation in which the resonator that is driven
on the red Stokes sideband (which describes the process of
removing mechanical excitations) is more strongly coupled
to the light with respect to the resonator that is driven on
the blue anti-Stokes sideband (which instead describes the
process of adding mechanical excitations). In other terms,
this condition indicates that mechanical excitations have to
be removed on a faster rate than they are added. Thereby,
the Bogoliubov collective mode can approach its vacuum
state which corresponds to a two-mode squeezed state of
the MRs, i.e., the MRs are prepared into an entangled state.
Note that in general a Bogoliubov transformation between two
modes can be parametrized in terms of a squeezing parameter
s as B̂ = δb̂2 cosh s + δb̂

†
1 sinh s. Comparing this expression

with Eq. (7) we observe that s is determined by the relation
tanh s = G1/G2. Therefore, the squeezing parameter s, and
hence the ratio G1/G2, determines how much the vacuum of
the Bogoliubov mode is squeezed, and hence entangled, in
terms of the original modes. In particular, the vacuum of the
Bogoliubov mode in the limit of equal coefficients G1/G2 →
1 corresponds to a maximally squeezed (and entangled) state of
the MRs. The collective mechanical mode that is not coupled
to the cavity mode remains, instead, in a thermal state defined
by the thermal bath, and correspondingly the global state of
the two MRs is a thermal squeezed state [45].

We note that in order to optimize this dynamics one needs,
on the one hand, a sufficiently large difference between the
couplings G1 and G2 (which implies a sufficiently large
collective couplingG such that the cooling is fast and efficient)
and, on the other hand, almost equal couplings G1 	 G2 such
that the steady state approaches a two-mode squeezed state
of the MRs with an extremely large squeezing s. Therefore,
there exists an optimal value of the ratio G1/G2, determined
by these two competing requirements, that corresponds to the
maximum attainable entanglement. When, instead, G1 = G2

the system displays no stationary mechanical entanglement,
but significant entanglement between the MRs can still be
achieved at finite times by, for example, driving the system
with light pulses [45]. In this case optimal entanglement
is obtained at vanishing cavity decay rate, and, if also the
thermal noise is negligible, the system dynamics reproduces, in
an optomechanical setting, the Sørensen-Mølmer mechanism
introduced in the context of trapped ions in Ref. [73] and
extended to optical entanglement in an optomechanical system
in Ref. [74].

III. THE COHERENT FEEDBACK LOOP

In Ref. [45] the dynamics at both steady state and finite
times have been extensively analyzed in the absence of
feedback, and it has been shown that strong entanglement
can be achieved in both cases. Hereafter we will analyze how

these dynamics are modified when a coherent feedback loop
is applied.

The feedback loop sends the output field of the cavity
back into the input port as depicted in Fig. 1. We shall
work in the limit of instantaneous feedback, which is a very
good approximation since typical mechanical frequencies are
relatively small. Specifically, considering a 5-cm cavity with
a 10-cm feedback loop, the delay time is ∼10−10 s; hence the
approximation of instant feedback remains valid for resonator
frequencies as large as hundreds of MHz. The output field is
obtained using the standard input-output formula [75]

âout =
√

2κ2δâ − âin
2 . (8)

Correspondingly, the new cavity input is modeled as the
superposition of the original input and the output field. In
practice, this is achieved by mixing the two fields in a beam
splitter (see Fig. 1) so that the input field modified by the
feedback is

âin
fb = rB eiθ âout + tB âin

1 , (9)

where rB and tB are the reflection and transmission coeffi-
cients, with r2

B + t2
B = 1 for a beam splitter without absorption,

and θ is an additional phase shift of the output field. It should
be noted that, in writing Eq. (9) we have included all the
possible losses (e.g., due to the transmission of the highly
reflective mirrors) and phase shift (due to the reflection and
propagation) of the light in the feedback loop into the reflection
coefficient rB and the phase θ respectively. Specifically, here
rB is interpreted as the real reflection coefficient of the beam
splitter minus additional losses in the feedback loop, which
means that in Eq. (9) rB cannot take unity, but only approaches
it, 0 � rB < 1.

Let us now analyze the system QLEs in the presence of
coherent feedback. The input noise operator modified by the
feedback, defined in Eq. (9), can be used to replace the bare
input noise operator âin

1 in Eq. (3). Thereby, using also Eq. (8),
we find the modified QLE for the cavity mode

δ ˙̂a = −(κ̃ + i �̃)δâ − iG1δb̂
†
1 − iG2δb̂2 +

√
2 κ̃ Âin, (10)

where we have introduced the effective cavity decay rate κ̃ and
the detuning �̃ which are modified by the feedback and are
explicitly given by

κ̃ = κ1 + κ2 − 2
√

κ1 κ2 rB cos θ,

�̃ = � − 2
√

κ1 κ2 rB sin θ. (11)

Moreover, the new input noise operator, which
describes vacuum noise, is given by Âin =
[(

√
κ2 −√

κ1e
iθ rB) âin

2 +√
κ1 tB âin

1 ]/
√

κ̃ , and it is
characterized by the correlation function 〈Âin(t)Âin†(t ′)〉 =
δ(t − t ′). The new parameters can be either enhanced or
reduced depending on the feedback phase. In particular, the
cavity decay rate can be reduced down to zero when the cavity
is symmetric with κ1 = κ2, the reflectivity approaches unity
rB → 1, and the phase is a multiple of 2π . Correspondingly,
for this value of the phase, the detuning remains unchanged.

We remark that Eq. (10) is valid under the conditions
defined by Eq. (2), and that the derivation of this equation
follows the same procedure sketched in the previous section
and analyzed in detail in Ref. [45]. The modified detuning and
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decay rate, which result from the feedback loop, do not change
the premises at the basis of the analysis reported in Ref. [45]
which, hence, remain valid also in this case. In particular, the
smaller cavity decay rate, that is achievable within the feedback
system, is important because it allows to extend the validity
of the protocol over a wider range of parameter. In fact, the
conditions expressed by Eq. (2) set stringent constrains due
to the relatively small mechanical frequencies that typically
characterize massive resonators. In practice, the condition on
the optomechanical couplings |gj

Ej

ωj
| � ω1,2, |ω1 − ω2| can

be easily fulfilled by adjusting the driving field power, while
the condition on the cavity decay rates κ1,2 � ω1,2, |ω1 − ω2|
is more difficult to be met. Therefore, a properly tailored
feedback loop is of great help because one can properly
adjust the value of the effective decay rate κ̃ . Furthermore,
the resulting entanglement is enhanced as well. In general, a
rough estimate of the cooling rate of the Bogoliubov mode
is G2/κ̃ (valid when � is negligible and G < κ̃). Hence, the
same cooling rate (and roughly the same cooling efficiency)
can be achieved by decreasing simultaneously the value of κ̃

and G. In particular, smaller G is obtained with closer values
of G1 and G2, that, in turn, correspond to stronger two-mode
squeezing of the two MRs and hence to stronger entanglement.

We finally remark that the complete suppression of the cav-
ity decay rate is not in general the optimal limit for achieving
maximum entanglement. The cooling of the Bogoliubov mode
is effective if the cavity can dissipate the mechanical energy
and this is efficient if κ̃ is not smaller thanG. Correspondingly,
we expect that there exists an optimal value of the reflectivity
rB which gives rise to maximum entanglement.

IV. RESULTS

In this section, we report the numerical results for the
entanglement, measured by the logarithmic negativity of the
two MRs, evaluated by solving the system QLEs according to
the procedure reported in the appendix.

A. Entanglement at steady state

Let us first analyze the effect of the feedback on the steady-
state entanglement. As we have already seen, the feedback
modifies the value of the cavity decay rate and of the optical
detuning according to the relations in Eq. (11). We first note
that, according to the discussions of Ref. [45], maximum
steady-state entanglement, in the absence of feedback, is
achieved for � = 0. Hence, we expect to optimize the
entanglement by setting the modified detuning equal to zero,
namely by setting � = 2

√
κ1 κ2 rB sin θ . This is the condition

that we consider in this section. Moreover, as discussed in
Sec. III, we expect to observe enhanced entanglement when
κ is reduced, i.e., for cos θ > 0. This is confirmed by the
results of Fig. 2. Here, the system is set in a parameter
regime of robust entanglement as discussed in Ref. [45]. In
particular, the results with no feedback correspond to the values
at θ = ±π/2 (for which κ̃ = κ1 + κ2), and we observe that
the entanglement increases for |θ | < π/2 under the effect of
coherent feedback. We remark that maximum entanglement
is obtained for a specific nonzero value of κ̃ that is achieved
as a trade-off between two opposite needs. Specifically, on

FIG. 2. Steady-state entanglement as a function of the feedback
parameters: reflectivity rB and phase shift θ . The other parameters are
n̄1 = n̄2 = 0, G1 = 0.99G2, γ1 = γ2 = 10 Hz, G2 = 2κ1 = 2κ2 =
105 Hz, and �̃ = 0.

the one hand, small κ̃ allows for an efficient cooling of the
Bogoliubov mode at smaller values of the collective coupling
G that correspond to stronger squeezing, and on the other hand,
efficient cooling requires finite κ̃ � G in order to efficiently
dissipate mechanical energy. The double peak structure at
large rB is due to the fact that the optimal value of the cavity
decay rate κ̃opt is obtained for all the points along the curve
in the θ − rB plane that fulfill the condition κ̃ = κ̃opt. We also
observe that, as suggested in the previous section, optimal
entanglement is not generally observed when the reflectivity
is maximum rB → 1, but instead, if θ is close to 2nπ , with n

integer, finite losses in the feedback (corresponding to rB < 1)
can be instrumental to reach the optimal result.

For convenience, we fix the feedback phase at the value
θ = 2nπ , with n integer, and study the efficiency of the scheme
as a function of the system parameters. In particular, hereafter
we also consider the specific situation of equal decay rates κ1 =
κ2 ≡ κ so that the effective cavity decay rate and detuning
reduce to

κ̃ = 2κ(1 − rB),

�̃ = �. (12)

In Fig. 3 we study the steady-state entanglement as a
function of G1/G2 and rB . In particular, the contour plots
in Figs. 3(a) and 3(b) report the steady-state logarithmic
negativity of the two MRs as a function of both G1/G2 and
rB . The solid lines in Figs. 3(c) and 3(d) correspond, instead,
to cuts of the contour plots along the value of rB that gives
the maximum in Figs. 3(a) and 3(b), respectively. Finally, the
dashed lines in Figs. 3(c) and 3(d) represent the results in
the absence of feedback (i.e., the results at rB = 0). As is
shown, the improvement due to the feedback is evident. We
remark that the maximum as a function of G1/G2 is found
as a compromise between fast cooling of the Bogoliubov
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FIG. 3. (a), (b) Contour plot for the steady-state entanglement EN as a function of G1/G2 and rB , with (a) n̄1 = n̄2 = 0, and (b) n̄1 = 200,
n̄2 = 100. (c), (d) Steady-state entanglement EN as a function of G1/G2 with (solid lines) and without (dashed lines) feedback, with (c)
n̄1 = n̄2 = 0, rB = 0.95, and (d) n̄1 = 200, n̄2 = 100, rB = 0.7. The other parameters are γ1 = γ2 = 10 Hz, G2 = 2κ = 105 Hz, � = 0, and
θ = 0.

mode (large collective coupling G, possibly much larger than
the mechanical dissipation rate ∼ γj n̄j ) and large two-mode
squeezing (achieved for G1/G2 → 1) corresponding to the
vacuum of a Bogoliubov mode with almost equal coefficients.
The plots in Figs. 3(a) and 3(b) are computed at zero and
finite temperature, respectively. As expected, the effect of the
temperature is to decrease the maximum entanglement but
at the same time it extends significantly the region in which
the scheme performs optimally. We also note that while in the
limit of zero temperature these dynamics appear quite sensitive
to variations of the optomechanical couplings, at moderate
temperatures, as those considered in Figs. 3(b) and 3(d)
(corresponding to tens of mK for mechanical frequency of
hundreds of MHz), entanglement is much less sensitive to the
specific value of the coupling ratio.

B. Entanglement at finite time with equal couplings

When G1 = G2 no entanglement is observed at large
times. In this case, however, the MRs can get entangled

at finite times. This is the case studied in Fig. 4, which
shows the time evolution of the logarithmic negativity for
the two MRs. The improvement due to the feedback is even
more evident in this case. Also, in this case the results are
evaluated with the conditions defined by Eq. (12), and each
curve corresponds to a different value of the reflectivity rB .
In particular, the lower lines correspond to the case without
feedback. Instead, the largest entanglement is obtained for
perfect reflectivity rB → 1 which corresponds to vanishing
κ̃ , indicating that in this case, unlike the unequal couplings
case studied above, it is favorable to have no losses in the
feedback loop. The maximum is obtained for a relatively
short interaction time, after which all the curves decay as a
result of the thermal noise affecting the mechanical degrees
of freedom. The detrimental effect of the temperature T is
also described by the comparison of Figs. 4(a) and 4(b), which
correspond to zero and nonzero T , respectively. We observe
that a higher temperature reduces the amount of achievable
entanglement and shrinks the time window over which it is
visible. Nevertheless, we observe that sizable entanglement
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FIG. 4. Time evolution of the mechanical entanglement EN in the case of equal couplings, G1 = G2 = 104 Hz. The evolution starts from
an initial separable state with the cavity mode in the vacuum state and each MR in its thermal state. Different lines correspond to different
values of rB : blue line rB = 1 (corresponding to the perfect feedback κ̃ = 0), green line rB = 0.999, red line rB = 0.99, purple line rB = 0.9,
and black line rB = 0 (corresponding to the case without feedback). In panel (a) n̄1 = n̄2 = 0 (i.e., T = 0 K), and in panel (b) n̄1 = 20 and
n̄2 = 10. The other parameters are γ1 = γ2 = 10 Hz, κ1 = κ2 = 5 × 104 Hz, � = 103 Hz, and θ = 0.

can still be achieved in situations of very modest performance
of the no-feedback scheme as shown in Fig. 4(b). We also note
that in Fig. 4(a) the curve corresponding to perfect reflectivity
(vanishing decay rate) oscillates in time. This is an evidence
of the Sørensen-Mølmer entanglement dynamics discussed in
Refs. [73,74], which, however, gradually disappears as the
decay rate increases (i.e., as the reflectivity rB reduces). The
Sørensen-Mølmer dynamics is also particularly sensitive to
the thermal noise, as shown by the comparison of Figs. 4(a)
and 4(b), and a small rise of temperature washes out the
oscillations of the entanglement. In order to realize these
dynamics, one could consider exploiting the techniques of
pulsed optomechanics [76], by sending two weak pulsed
probe beams following the detection scheme presented in
Ref. [45].

V. CONCLUSIONS

We have studied how a coherent feedback loop can be
exploited to improve the efficiency of the scheme for the
preparation of entanglement between two MRs reported in
Ref. [45]. The feedback loop is optimized by controlling how
much light is actually sent back coherently into the cavity. This
can be realized using a beam splitter with tunable reflectivity.
We have shown that the feedback results in a significantly
reduced cavity decay rate when the reflectivity of the beam
splitter is large and when the phase shift of the light in the
feedback loop is properly chosen. This allows, on the one
hand, to extend the validity of the original scheme, which
requires a small cavity decay rate for its optimal efficiency,
and on the other hand, to significantly increase the value of the
entanglement as compared to the scheme without feedback.
It is finally interesting to note that while, in the case of
equal couplings where entanglement is generated only in the
dynamical transient, maximum entanglement is obtained in the
limit of a perfectly efficient feedback loop where all the output
light is sent back into the cavity, the steady-state entanglement
is not in general optimized for perfect feedback. In fact, we

have demonstrated that it can be useful to have finite losses in
the feedback loop, corresponding to nonperfect reflectivity rB

of the beam splitter, in order to enhance the performance of
the scheme.
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APPENDIX

Here we briefly introduce the method we employ to
determine the entanglement between the two MRs. The
entanglement is calculated using the logarithmic negativity.
It can be computed in terms of the covariance matrix of the
two mechanical modes, which is obtained by solving the QLEs
(4), (5), and (10). The QLEs can be rewritten in the following
form:

u̇(t) = Au(t) + n(t), (A1)

where u is the vector of quadrature fluctuation opera-
tors of the two mechanical modes and one cavity mode,
i.e., u(t) = [δq̂1(t),δp̂1(t),δq̂2(t),δp̂2(t),δX̂(t),δŶ (t)]T, with
δq̂j = (δb̂j+δb̂

†
j )/

√
2, δp̂j = i(δb̂

†
j−δb̂j )/

√
2 (j = 1,2), and

δX̂ = (δâ+δâ
†
)/
√

2, δŶ = i(δâ
†−δâ)/

√
2. A is the so-called
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drift matrix, which takes the form of

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− γ1

2 0 0 0 0 −G1

0 − γ1

2 0 0 −G1 0
0 0 − γ2

2 0 0 G2

0 0 0 − γ2

2 −G2 0
0 −G1 0 G2 −2κ(1−rB cos θ ) �̃

−G1 0 −G2 0 −�̃ −2κ(1−rB cos θ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

with the parameters defined in the main text (we have assumed
κ1 = κ2 ≡ κ). The system is stable when all the eigenvalues
of the drift matrix have negative real parts, which is equivalent
to the condition

|G2|2 > |G1|2− κ̃ γ

2

[
1 + 4�̃2

(γ + 2κ̃)2

]
, (A3)

for the case of equal mechanical dampings γ1 = γ2 ≡ γ [45].
The term n(t) is the vector of noise quadrature operators
associated with the noise terms in the QLEs (4), (5), and (10).
The formal solution of Eq. (A1) is given by

u(t) = M(t)u(0) +
∫ t

0
ds M(s)n(t − s), (A4)

where M(t) = eAt . Therefore, the covariance matrix V (t)
of the system quadratures, with its entries defined as Vij =
1
2 〈{ui,uj }〉 ({·,·} denotes an anticommutator), is obtained

V (t) = M(t)V (0)M(t)T +
∫ t

0
ds M(s)DM(s)T, (A5)

where V (0) is the covariance matrix associated with the initial
state of the system and D is the diffusion matrix, whose entry

is defined as

1
2 〈ni(t)nj (s) + nj (s)ni(t)〉 = Dij δ(t − s). (A6)

The diffusion matrix is a diagonal matrix which, for the QLEs
(4), (5), and (10), is D = diag[γ1(n̄1 + 1

2 ),γ1(n̄1 + 1
2 ),γ2(n̄2 +

1
2 ),γ2(n̄2 + 1

2 ),2κ(1 − rB cos θ ),2κ(1−rB cos θ )].
Once the covariance matrix V (t) is obtained, the entangle-

ment can then be quantified using the logarithmic negativity
[77]:

EN (t) = max[0, − ln 2ν̃−(t)], (A7)

where ν̃−(t) = min eig|i�2Ṽm(t)| (�2= ⊕2
j=1 iσy is the so-

called symplectic matrix and σy is the y-Pauli matrix) is
the minimum symplectic eigenvalue of the covariance matrix
Ṽm(t) = PVm(t)P, with Vm(t) being the 4 × 4 covariance
matrix related to the two mechanical modes and P =
diag(1,1,1, − 1) being the matrix that inverts the sign of
momentum of the second MR, i.e., δp̂2 → −δp̂2, realizing
partial transposition at the level of covariance matrices [78].
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