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Measurement of Stokes-operator 
squeezing for continuous-variable 
orbital angular momentum
Jun Guo1,2, Chunxiao Cai1,2, Long Ma1,2, Kui Liu1,2, Hengxin Sun1,2 & Jiangrui Gao  1,2

We demonstrate experimentally a measurement scheme for the Stokes operators for the continuous-
variable squeezed states of orbital angular momentum (OAM). An OAM squeezed state is generated by 
coupling a dim Hermite-Gauss HG01-mode quadrature-squeezed light beam with a bright HG10-mode 
coherent light beam on a 98/2 beam splitter. Using an asymmetric Mach–Zehnder interferometer with 
an extra Dove prism in one arm, we measured the three orbital Stokes operators of the OAM squeezed 
states with a self-homodyne detection and finally characterized their positions and noise on the orbital 
Poincaré sphere.

Propagating light beams carry spin angular momenta (SAM) associated with the polarizations and orbital angu-
lar momenta (OAM) related to the spatial helical phase structures1. Recently, the quantum OAM states have 
attracted increasing attention because of added increases in dimensionality of the associated Hilbert space and 
their potentials for quantum imaging2, quantum metrology3, and quantum storage4. For example, the quantum 
OAM states can be applied to measure the rotation angle of optical beams beyond the shot-noise limit (SNL)5. 
Another important application of the OAM states is their connectivity with atoms, allowing for storage of quan-
tum information6, 7.

Compared with the vast majority of research on discrete OAM states in the single-photon regime8–10, there 
has been very little work concerning the continuous-variable (CV) OAM states. CV entanglement between two 
Laguerre-Gauss modes was first realized in a hot vapour based on four-wave mixing11, 12. CV entanglement 
between the first-order OAM states has also been produced in a type-I optical parametric oscillator (OPO) and 
the orbital Stokes operators of the OAM states were demonstrated to be squeezed13. CV hyper-entanglement, i.e., 
simultaneous entanglements of SAM and OAM, has been theoretically predicted14 and experimentally realized 
in a multimode type-II OPO15.

However, in refs 13 and 15, the squeezing and entanglement of the orbital Stokes operators were inferred from 
the measured quadrature squeezing and entanglement of Hermite–Gauss and Laguerre–Gauss modes based on 
balanced homodyne detection with spatially tailored local oscillators. In 2009, Lam et al. theoretically proposed 
a spatial detection scheme comprised of an asymmetric Mach–Zehnder interferometer and a pair of cylindrical 
lenses to measure all three Stokes operators of OAM16, but until now no experiment has been reported.

In this Letter, we propose and demonstrate experimentally a scheme to measure all three Stokes operators 
of OAM requiring an asymmetric Mach–Zehnder interferometer with a Dove prism in one arm. This scheme is 
more convenient to operate in experiments, and the set-up is broadly applicable to the first-order OAM states. 
With no local oscillator needed, the first-order OAM states entering the set-up can be measured. In contrast, 
for balanced homodyne detection, a local oscillator is required that is spatially tailored to the first-order mode 
to be measured. In addition, our scheme is more efficient in certain nonlocal quantum information protocols, 
in which it is hard to select the optimal local oscillators, such as quantum state transmission17 and quantum key 
distribution18.

Orbital angular momentum squeezed state
Similar to the polarization of light, the first-order spatial modes can also be characterized by the orbital Stokes 
operators and mapped onto the orbital Poincaré sphere16, 19. Such a sphere is displayed in Fig. 1 for the first-order 
OAM modes.
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The quantum orbital Stokes operators for the first-order OAM modes can be expressed as16
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where Ô0, Ô1, Ô2 and Ô3 denote respectively operators corresponding to the total number of photons, the differ-
ence in photon number between modes HG10 and HG01 modes, and likewise between the pair of modes 



HG10
45  

and 


HG10
135 , and modes +LG0

1 and −LG0
113, 15. ˆ †a10(01) and â10(01) are the creation and annihilation operators for the 

HG10 (HG01) modes, ϕ is the phase difference between modes HG10 and HG01. The definitions of Ô2 and Ô3 in Eq. 
(1) contain the product of annihilation operators relative to two different field modes. This in turn implies that to 
have an apparatus able to effectively realise this operator, spatial and temporal profiles of the two modes have to 
match optimally (perfectly in the ideal case) and a control on the relative phase between the two modes is needed.

The annihilation operators of photons can be linearized as α= + ∆ˆ ˆa a10(01) 10(01) 10(01), where α10(01) repre-
sents the mean amplitude and ∆â10(01) is the quantum noise operator. Introducing the amplitude and phase 
quadrature operators = +ˆ ˆ ˆ†X a a  and = − −ˆ ˆ ˆ†Y i a a( ), then

∆ = ∆ + ∆ .ˆ ˆ ˆa X i Y1
2
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The noise variances of the Stokes operators shown in Fig. 1(b) are obtained as
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Here ∆ X̂2
10(01) and ∆ Ŷ2

10(01) are the noise variances of amplitude quadrature ( = +ˆ ˆ ˆ†X a a ) and phase quadrature 
( = − −ˆ ˆ ˆ†Y i a a( )) operators for â10(01) modes. α10(01) are the mean amplitudes for the two modes. These equa-
tions state that different types of OAM squeezed states can be generated through combinations of 
quadrature-squeezed states. For example, if we couple two amplitude-squeezed states of the HG10 and HG01 
modes [i.e., ∆ <X̂ 12

01  and ∆ <X̂ 12
10 ] with their relative phase ϕ = 0, then squeezing of the operators ˆ ˆ ˆO O O, ,0 1 2 

is obtained; Ô3 appears anti-squeezed when mapped onto the orbital Poincaré sphere. The volume of quantum 
noise is represented as a “cigar-like” ellipsoid [Fig. 2(a)], which has been generated in ref. 13. When ϕ = π/2, then 
squeezing of ˆ ˆ ˆO O O, ,0 1 3 is achieved, and Ô2 is anti-squeezed. The state is also cigar-like [Fig. 2(b)]. If we couple 
two phase-squeezed states for modes HG10 and HG01 [i.e., ∆ <Ŷ 12

01  and ∆ <Ŷ 12
10 ] with their relative phase 

ϕ = 0, then Ô0, Ô1, Ô2 are anti-squeezed and only Ô3 is squeezed when mapped onto the Poincaré sphere; a 
“pancake-like” ellipsoid is produced [Fig. 2(d)]. When ϕ = π/2, only Ô2 is squeezed, whereas Ô0, Ô1, Ô3 are 
anti-squeezed. The state is also pancake-like [Fig. 2(c)]. In addition, if we couple a bright coherent HG10 mode 
[i.e., ∆ =X̂ 12

10 ] with a dim amplitude squeezed HG01 mode [i.e., ∆ <X̂ 12
01 ] or a bright coherent HG01 mode 

with a dim amplitude squeezed HG10 mode with ϕ = 0, then Ô2 is squeezed, Ô3 is anti-squeezed, and Ô0 and Ô1 are 
shot noise limited (SNL). The quantum spheres are “pancake-like” ellipsoids [Fig. 2(e)]. If ϕ = π/2, Ô3 is squeezed, 

Figure 1. (a) Orbital Poincaré sphere for the first-order spatial modes. (b) Quantum noise representation of 
OAM state (thick ring) on the Poincaré sphere.
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Ô2 is anti-squeezed, and Ô0 and Ô1 are SNL. The state is also pancake-like [Fig. 2(f)]. Here the quantum states 
shown in Fig. 2(e) and (f) are generated and measured in the experiment.

Detection scheme
To measure the three orbital Stokes operators (see Fig. 3), we propose a scheme based on the asymmetric Mach–
Zehnder interferometer with a Dove prism in one arm. The Dove prism is used to convert a HG10 mode into a 
HG01 mode or vice versa. In an asymmetric Mach–Zehnder interferometer, there are two mirrors M1 and M2 in 
arm a16, 20 that add an extra phase eiπ to the HG10 mode but have no effect on the HG01 mode. M1 and M2 are the 
same for the first three schemes (1), (2), and (3) used in the detection of ˆ ˆ ˆO O O, ,0 1 2. In scheme (4) for Ô3, unlike 
the first three schemes, there is only a single mirror in a arm, and hence creates a symmetric Mach–Zehnder 
interferometer having a Dove prism in b arm.

Any first order spatial mode ψ can be expressed as

ψ = + ϕ ˆ ˆ ˆa u r e a u r( ) ( ), (4)i
01 01 10 10

where u r( )01(10)  are the normalized transverse beam amplitude functions for modes HG01 (HG10), and ϕ is the 
phase difference between modes HG10 and HG01. An account of the quantum vacuum noise entering the setup 
through the unused port BS1 is introduced by defining the operator

ν = +ν ϕ ν ˆ ˆ ˆa u r e a u r( ) ( ), (5)i
01 01 10 10

where νâ01(10) are the quantum vacuum noise operators for HG01 (HG10) modes.
With the presence of the two mirrors M1 and M2, in a arm for schemes (1) and (2), the HG10 mode receives 

an extra phase eiπ, that is, u10 → −u10, while HG01 mode is not changed, u01 → u01; hence,

ψ = − + −ϕ ν ϕ νˆ ˆ ˆ ˆ ˆa u e a u a u e a u1
2
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whereas in b arm, we have
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The two output states of beam splitter BS2 are

Figure 2. Orbital Poincaré spheres for the different types of OAM squeezed states.
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where θ is the relative phase between the two arms of the interferometer. When θ = 0, the sum of the two photo-
currents is

∫ ∫ψ ψ ψ ψ+ = + =
 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †dr dr a a a a O , (9)1 1
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which is just the first orbital Stokes operator as defined in Eq. (1). The difference in the two photocurrents is

∫ ∫ψ ψ ψ ψ− = − =
 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †dr dr a a a a O , (10)2 2
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which is the second orbital Stokes operator [see Eq. (1)].
For a arm of scheme (3), the equation is the same as Eq. (5), whereas in b arm, the Dove prism is used to rotate 

the mode by 90°, that is, u01 → u10, u10 → −u01, and therefore
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when θ = 0. The difference between the two photocurrents is
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which is the third orbital Stokes operator [see Eq. (1)].
For a arm of scheme (4),
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Figure 3. Detection scheme for the four orbital Stokes operators ˆ ˆ ˆ ˆO O O O, , ,0 1 2 3.



www.nature.com/scientificreports/

5Scientific RepoRts | 7: 4434  | DOI:10.1038/s41598-017-04713-6

whereas in b arm, with the Dove prism inserted, the state is the same as Eq. (10). When θ = π
2

,

∫ ∫ψ ψ ψ ψ− = − = .ϕ ϕ− ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †dr dr ia a e ia a e O (14)
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which is the fourth orbital Stokes operator [see Eq. (1)]. Therefore, we can use the detection scheme to measure 
the four orbital Stokes operators16, and the quantum vacuum noise has no effect on the results.

Considering the imperfection of the setup and assuming the mode conversion efficiency η1 of the two mirrors 
M1 and M2 and η2 of the Dove prism, the modes through the conversions of mirrors M1 and M2 become 

η η→ − + −u u u110 1 10 1 01, η η→ + −u u u101 1 01 1 10, and the modes after the rotations of Dove prism 
become η η→ − + −u u u110 2 01 2 10, η η→ + −u u u101 2 10 2 01. Then the result for scheme (1) is still Ô0. 
For scheme (2), it becomes η η+ −ˆ ˆO O11 1 1 2, and the noise becomes η η∆ + − ∆ˆ ˆO O(1 )1

2
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10 . Therefore, the imperfections will cause 
the coupling of different Stokes operators, degrading the detection accuracies for the three Stokes operators. On 
the other hand, considering the mode matching efficiency ξ2 between the two arms caused by misalignment of 
Mach–Zehnder interferometer, the optical transmission efficiency ηtr and the quantum efficiency of photodetec-
tors ηphot, the noise of Ô1 becomes η η η η η∆ + − ∆ + −ˆ ˆO O(1 ) 11 det

2
1 1 det

2
2 det, where η η η ξ= tr photdet
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10 det, so all these inefficiencies will intro-
duce the vacuum noise and degrade the detection efficiencies for Ô1, Ô2 and Ô3, further degrading the degree of 
the measured squeezing in experiment.

Experimental set-up
Referring to the experimental set-up illustrated in Fig. 4, a two mode squeezed state of 1080 nm for HG01 mode is 
generated from a NOPA15, 21, then the bright mode which is an amplitude squeezed state is separated by the com-
bination of a half wave plate and a polarizing beam splitter22. The HG01 mode squeezed state is firstly detected by 
a balanced homodyne detection with the flip mirror F1 on, and the squeezing value is obtained. Then F1 is turned 
off, the HG01 squeezed state with power of 30 μW is coupled with a bright coherent HG10 mode of 1080 nm with 
power of 100 mW on a 98/2 beam splitter, ensuring the squeezing power of 98% is transmitted and the coherent 
power of 2% is reflected, generating the OAM squeezed state. As the definition in Eq. (1), the coupling of HG01 
mode and HG10 mode requires mode matching and phase locking, since the HG01 mode and the HG10 mode are 
two orthogonal modes, we assess the mode matching by the interference between the HG00 modes which are 
eigenmodes orthogonal with the HG10 modes on the 98/2 beam splitter. In addition, we use an iris to acquire part 
of the interference of HG01 and HG10 modes to control the relative phase through a servo system and PZT1, gen-
erating different types of OAM squeezed states. We lock the relative phase ϕ to 0 or π

2
 in the experiment.

Figure 4. Experimental set-up for the generation and detection of OAM squeezed states. PZTs: piezoelectric 
transducers, 98/2: 98/2 beam splitter, BSs: 50/50 beam splitter, Ms: high-reflectivity mirrors, Fs: flip mirrors, 
Dove: Dove prism, PDs: photodetectors,(+/−): positive/negative combiner, SA: spectrum analyser, Servo: servo 
amplifier circuit for feedback system.
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The OAM squeezed states are measured implementing the scheme discussed in the previous section (see 
Fig. 3). As shown in Fig. 4, we use a flip mirror (F2) to choose where the OAM squeezed state goes. If F2 is off/on, 
the state goes to the detection scheme for Ô1/Ô2 and Ô3. The other two flip mirrors, F3 and F4, are used to deter-
mine whether Ô2 or Ô3 is detected; if F3 and F4 are both off/on, the asymmetric/symmetric Mach–Zehnder inter-
ferometer is active, and hence Ô2/Ô3 is detected. PZT2 and PZT3 are used to lock the relative phases θ between the 
two arms of the Mach–Zehnder interferometers. When Ô1 and Ô2 are being measured, θ is locked to zero; when 
Ô3 is being measured, θ is locked to π

2
. The two outputs of the interferometers enter two photodetectors, and the 

photocurrents feed a positive/negative combiner (+/−), and these outputs are recorded by a spectrum analyser 
(SA). A positive combiner (+) determines the SNL; a negative combiner (−) determines the noise of the orbital 
Stokes operators.

In our scheme, a local oscillator is unneeded, so it is more efficient in certain nonlocal quantum information 
protocols, such as free-space quantum state distribution17, 18 which has the potential to form a key component 
in future quantum networks. In the squeezing enhanced CV quantum key distribution (QKD) protocols, the 
decoherence as a result of phase relation variations and wave front distortions plays an important role in the deg-
radation of the quantum states, thus standard homodyne measurements at the receiver are challenging17. Similar 
to polarization squeezed state, the OAM squeezed state based on our measurement scheme of Stokes operators 
is promising to supply a way to avoid the problem. Moreover, it can be expanded to high-dimensional CV QKD 
based on high-dimensional OAM.

Experimental Results
Figure 5 gives the squeezing curves for HG01 mode, (a) is the squeezing and anti-squeezing values for HG01 mode 
from 1 MHz to 30 MHz. The squeezing exists over a large frequency domain of 1–30 MHz; (b) is the noise power 
for HG01 mode at 5 MHz. The squeezing value is −3.01 ± 0.03 dB at 5 MHz. Considering the overlap efficiency in 
balanced homodyne detection ηhd = 0.93 ± 0.01, and the quantum efficiency of the photodiode ηphot = 0.90 ± 0.02, 
the inferred squeezing is −3.95 ± 0.12 dB.

The measured noise powers for the OAM Stokes operators are depicted in Fig. 6. The quantum noise for the 
first Stokes operator Ô1 is almost shot noise limited over the frequency domain 1–30 MHz for both ϕ = 0 and 

Figure 5. Noise power for the HG01 mode. (a) the squeezing and anti-squeezing values for HG01 mode from 
1 MHz to 30 MHz. (b) the noise power for HG01 mode at 5 MHz.

Figure 6. Noise power for the three orbital Stokes operators for OAM squeezed states with ϕ = 0 and ϕ = π/2.
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ϕ = π/2. At 5 MHz, the quantum noise for Ô1 is −0.07 ± 0.25 dB for ϕ = 0 and 0.12 ± 0.22 dB for ϕ = π/2. When 
ϕ = 0, the quantum noise for the second Stokes operator Ô2 is squeezed. The squeezing exists over a large fre-
quency domain of 1–30 MHz; the squeezing of −1.70 ± 0.15 dB at 5 MHz is obtained. The third Stokes operator 
Ô3 is anti-squeezed, the anti-squeezing noise is 5.06 ± 0.06 dB at 5 MHz. When ϕ = π/2, the quantum noise for the 
third Stokes operator Ô3 is squeezed,and the squeezing also exists over a large frequency domain of 1–30 MHz, 
and the squeezing of–1.96 ± 0.16 dB at 5 MHz is obtained. The second Stokes operator Ô2 is anti-squeezed, the 
anti-squeezing noise is 5.06 ± 0.03 dB at 5 MHz. The peak at 18 MHz is a modulation signal for phase locking.

In experiment, the maximum coupling efficiency on the 98/2 beam splitter for HG01 and HG10 modes is 
ηcoup = 0.93 ± 0.02, which is the mode matching efficiency of the HG00 modes, and considering the loss of 2% of 
the squeezed state, the total efficiency is ηtot = 0.91 ± 0.02. After the 98/2 beam splitter, the squeezing of the Stokes 
operators Ô2 and Ô3 should be −3.41 ± 0.2 dB at 5 MHz, which is inferred from the squeezing of −3.95 ± 0.12 dB 
for HG01 mode.

Considering the detection efficiency, for Ô2, the mode matching efficiency of the MZ interferometer is 
ξ2 = 0.92 ± 0.02, the optical transmission efficiency is ηtr = 0.90 ± 0.02, and the quantum efficiency of photodetec-
tors is ηphot = 0.90 ± 0.02, then the detection efficiency is ηdet = ηtrηphotξ2 = 0.75 ± 0.05, additionally considering the 
mode conversion efficiency η1 = 0.97 ± 0.01 of the two mirrors M1 and M2 and η2 = 0.97 ± 0.01 of the Dove 
prism, then the inferred noise of Ô2 at 5 MHz is −2.09 ± 0.36 dB when ϕ = 0. For Ô3, the mode matching efficiency 
of the MZ interferometer is ξ2 = 0.96 ± 0.02, the optical transmission efficiency is ηtr = 0.91 ± 0.02, and the quan-
tum efficiency of photodetectors is ηphot = 0.90 ± 0.02, then the detection efficiency is ηdet = ηtrηphotξ2 = 0.79 ± 0.05, 
additionally considering η2 = 0.97 ± 0.01 of the Dove prism, then the inferred noise of Ô3 at 5 MHz is 
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Figure 7. OAM squeezed states mapped onto the orbital Poincaré sphere. (a) orbital Poincaré sphere for ϕ = 0. 
(b) orbital Poincaré sphere for ϕ = π/2.
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−2.33 ± 0.37 dB when ϕ = π/2. In addition, for Ô1, the mode matching efficiency is ξ2 = 0.98 ± 0.02, the transmis-
sion efficiency is ηtr = 0.93 ± 0.02, and the quantum efficiency of photodetectors is ηphot = 0.90 ± 0.02, then the 
detection efficiency is ηdet = ηtrηphotξ2 = 0.82 ± 0.05, additionally considering η1 = 0.97 ± 0.01 of the two mirrors 
M1 and M2, when ϕ = 0, the inferred noise of Ô1 at 5 MHz is −0.08 ± 0.25 dB, when ϕ = π/2, the inferred noise of 
Ô1 at 5 MHz is 0.21 ± 0.25 dB.

Here, we use the HG00 mode interference to estimate the mode matching efficiency of the 98/2 beam splitter, 
the practical coupling efficiency for HG01 and HG10 modes on the 98/2 beam splitter should be lower than the 
estimate value, so the measured squeezing for Ô2 and Ô3 in experiment are lower than the inferred squeezing 
values. But for balanced homodyne detection13, 15, the measurement results of squeezing are independent of the 
mode matching efficiency between HG01 and HG10 modes on the 98/2 beam splitter, and it can’t infer accuracy 
results for Stokes operators.

The OAM squeezed states at 5 MHz were mapped onto the orbital Poincaré sphere (Fig. 7); (a) is the orbital 
Poincaré sphere for ϕ = 0, (b) is the orbital Poincaré sphere for ϕ = π/2, (a1) and (b1) show positions and forms of 
the OAM squeezed states for ϕ = 0 and ϕ = π/2. As the HG10 mode is a bright coherent state, the OAM states are 
therefore positioned on the positive part of the Ô1 axis. (a2) shows the sphere for the quantum noise of the OAM 
squeezed state with ϕ = 0. Here ∆Ô1 is SNL, ∆Ô2 is squeezed, and ∆Ô3 is anti-squeezed; hence it is pancake 
shaped. Similarly (b2) shows the sphere for the state with ϕ = π/2. Note ∆Ô1 is still SNL, with ∆Ô2 anti-squeezed 
and ∆Ô3 squeezed, and therefore also pancake shaped. The experimental results agree with Eq. (3) well.

Conclusion
The CV OAM squeezed states have great potential in high-dimensional quantum information processing, 
super-resolution quantum imaging, quantum precise measurement, and quantum storage. We demonstrated 
experimentally a new measurement scheme for the Stokes operators of the first-order OAM squeezed state. The 
OAM squeezed states are generated by coupling a HG01 squeezed state with a bright coherent HG10 mode on a 
98/2 beam splitter. With the scheme, we measured the squeezing of the Stokes operators. The experiment demon-
strates that the scheme is effective and efficient. The CV OAM states with the detection scheme is promising for 
applications in nonlocal quantum information, and the scheme may be extended to high-order CV OAM states 
for high-dimensional quantum information processing.
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