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Abstract: We study the equivalence between the entanglement-based scheme and prepare-and-

measure scheme of unidimensional (UD) continuous-variable quantum key distribution protocol. 

Based on this equivalence, the physicality and security of the UD coherent-state protocols in the 

ideal detection and realistic detection conditions are investigated using the Heisenberg uncertainty 

relation, respectively. We also present a method to increase both the secret key rates and maximal 

transmission distances of the UD coherent-state protocol by adding an optimal noise to the 

reconciliation side. It is expected that our analysis will aid in the practical applications of the UD 

protocol. 
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1. Introduction 

Quantum key distribution (QKD), which is a prominent application of the quantum information, 

enables two remote parties, conventionally called Alice and Bob, to share a common secret key 

through an insecure quantum channel and an authenticated classical channel [1,2]. This 

unconditional security is guaranteed by the basic principles of quantum mechanics. Continuous-

variable quantum key distribution (CV-QKD) has attracted considerable attention over the past years 

because of its good performances in the secret key rates and compatibility with the current optical 

networks [3–16]. A particular class of CV-QKD protocols that is based on the Gaussian modulation 

of coherent states has experienced a rapid development [17–27]. In a coherent-state protocol, Alice 

encodes her information in the amplitude and phase quadratures of the coherent light field by using 

amplitude and phase modulators, and Bob performs homodyne or heterodyne detection. 

Recently, a further simplified unidimensional (UD) CV-QKD protocol has been proposed [28]. 

In such protocol, Alice, still using coherent states, encodes her information by using one modulator 

(e.g., amplitude modulator) instead of two, whereas Bob performs a homodyne detection, hence 

simplifying both the modulation scheme and the key extraction task. The security against collective 

attacks has been proved in asymptotic regime. However, this early work only considered the UD 

model under an idea homodyne detector. It does not refer to the realistic condition, such as the 

efficiency and electronic noise of the homodyne detector. Then, a model of the UD protocol under 

realistic condition was designed and realized in an experiment [29]. Furthermore, the finite size effect 

was analyzed in paper [30], and an optimum ratio in parameters estimation was proposed. 
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In the UD protocol, due to the fact that the phase quadrature is not modulated in Alice’s side, 

we cannot estimate the correlation in the phase quadrature between Alice and Bob. However, this 

unknown parameter is bounded by the requirement of the physicality of the state. A Gaussian state 

can typically be characterized by a covariance matrix. However, not all covariance matrices 

correspond to physical states, as the covariance matrix must respect the Heisenberg uncertainty 

relation [31,32]. By using this uncertainty relation, we can calculate the physical region boundary of 

a covariance matrix, which is crucial for the security of the protocol. We can see that the UD CV-QKD 

protocol is very different from the previous symmetrical (SY) coherent-state protocol [18,21]. Due to 

the equivalence between the prepare-and-measure (PM) and entanglement-based (EB) scheme of UD 

protocol, the differences of the Heisenberg uncertainty relations under the idea and realistic 

condition, and the effect of noise from Bob’s setup on secret key rate under realistic condition are not 

described or investigated in depth [28–30], a further study about above questions is required. 

In this paper, we first consider the equivalence between the PM scheme and the EB scheme of 

the UD CV-QKD protocol. Then, we analyze the boundary of the physical region of the symmetrical 

coherent-state protocol based on the Heisenberg uncertainty relation. We also study the variances of 

the physical region of the UD coherent-state protocol under the conditions of different detection 

efficiency and electronic noise. Secure and unsecure regions of both the protocols are further analyzed 

under ideal and realistic detection conditions. It is found that adding an optimal noise to Bob’s side 

can truly help the improvement of the secret key rate and increase the transmission distance of the 

UD coherent-state protocol under the assumption of reverse reconciliation. 

The paper is organized as follows. In Section 2, we introduce the equivalence between the EB 

scheme and the PM scheme of the UD CV-QKD protocol. In Section 3, a comparison between the 

physical and secure regions of the UD protocol under ideal and realistic detection conditions is shown, 

and a method to improve the performance of the UD coherent-state protocol by adding an optimal 

noise to Bob’s side is proposed. In Section 4, we give our conclusions and discussions. 

2. Unidimensional Quantum Key Distribution 

2.1. Equivalence between the EB Scheme and the PM Scheme 

Generally, most of the experimental systems in CV-QKD are focused on PM schemes currently, 

given their ease of implementation in practice. However, it’s hard to analyze the security in theory. 

On the contrary, the theoretical analysis based on EB scheme is maturity. The involved entangled 

states make the calculations feasible and simpler [33]. Especially in UD CV-QKD protocol, the 

security analysis based on EB scheme has more advantages. The covariance matrices achieved from 

the EB schemes contain the constraints of phase amplitude quadrature. However these constraints is 

difficult to achieve from the PM scheme. More details about the security analysis will be shown later. 

Now, it is necessary to study the equivalence of EB and PM schemes, firstly. This equivalence is based 

on the indistinguishability between these two protocols for Bob and Eve. The consequent advantage 

of this equivalence is that it is sufficient to implement the PM scheme and study the EB scheme. 

In the PM scheme, as depicted in Figure 1a, the sender, Alice, prepares coherent states using a 

laser source. Then, she encodes the information in the amplitude or phase quadratures of coherent 

states by using either amplitude or phase modulators. Here, without losing generality, we assume 

that Alice uses an amplitude modulator with a modulation variance 
MV , which is assumed to be 

expressed in shot-noise units, and that the coherent states follow the uncertainty principle of variance 

1. Thus, the mixture of Gaussian-modulated coherent states gives rise to a unidimensional chain 

structure with a thickness of 1 and a length of 1+ MV  in the phase space. These quantum states are 

then sent to Bob through an untrusted quantum channel with transmittance 
xT , 

yT  and excess noise 

x , 
y . 
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Figure 1. Unidimensional (UD) protocol schemes under realistic conditions. (a) Prepare-and-measure 

(PM) scheme of the UD protocol; (b) Entanglement-based (EB) scheme of the UD protocol. 

In the EB scheme, as shown in Figure 1b, Alice starts with a two-mode squeezed vacuum state 

0AB  with variance V . Then, she performs homodyne detection on the first half of the state and 

squeezes the second half by lnr V . The result is the covariance matrix 
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The covariance matrix of mode S , conditioned on Alice’s measurement result (
ax ), can be 

written as 

 a
MPx T

S S AS A ASX X      , (2) 

and the displacement vector can be expressed as 

 a
MPx T

S AS A Ad X X d  , (3) 

where 
Ad  is the result of the homodyne measurement, 

A  and 
S  are the covariance matrices of 

the modes A  and S , respectively, 
AS  is the correlation matrix of the two modes,  1,0X diag , 

and MP  denotes the Moore–Penrose inverse of the matrix [34]. 

Then, we obtain 

 
21 0 1

   and   ,0
0 1

a ax x

S S a

V
d x

V


  
  
 

, (4) 

which is a coherent state centered on ax

Sd . Furthermore, the variance of ax

Sd  is 

2 2
2 2 21 1

1ax

S a

V V
d x V V

V V

 
      , (5) 

where 2 1V   is exactly the variance of the Alice’s 
MV . Then, we can establish a one-to-one 

correspondence between the EB scheme and the PM scheme by multiplying the outcome of Alice’s 

measurements by the factor 
2 1V

V



 . 
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2.2. Calculation of Secret Key Rate with Reverse Reconciliation 

Thus far, we have established the equivalence between the EB scheme and the PM scheme of the 

UD CV-QKD protocol. In this subsection, we present a brief overview of the calculation of the secret 

key rates. In the EB protocol, the realistic Bob’s detector can be modeled by an ideal balanced 

homodyne detector and a beam splitter, with transmission efficiency   and input noise 

 1 1N elV v    , as the one shown in Figure 1b. The secret key rate against collective attacks for 

reverse reconciliation in the asymptotic regime can be calculated as [29,30] 

RR AB BEK I     , (6) 

where   is the reverse reconciliation efficiency and 
ABI  is the mutual information between Alice 

and Bob. 
ABI  can expressed as 

2

totx

1
log 1

2 1

M

AB

V
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, (7) 

where 
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Still from Equation (6), 
BE  is the Holevo bound, which represents an upper bound on the 

information acquired for reverse reconciliation by the potential eavesdropper Eve. The procedures to 

calculate 
BE  can be written as: 
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where  S   is the von Neumann entropy of the quantum state  ,      2 21 log 1 logg x x x x x     

and 
i  are the symplectic eigenvalues of the covariance matrix  , with 
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(11) 

where 1B

yV  is the variance of the mode 
1B  in phase quadrature with 1 1

B

y y yV T    and 1B

yC  is the 

correlation between A  and 
1B  in phase quadrature with  1

1 4
1

B

y y M MT VC V


  . 
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3. Security Analysis Using Uncertainty Relations 

In this section, we provide a security analysis of continuous variable quantum key distribution 

with coherent states based on the Heisenberg uncertainty relation. Before describing the UD 

coherent-state protocol case, it is useful to first consider the SY coherent-state protocol case. 

3.1. Uncertainty Relations for Symmetrical Coherent-State Protocol 

Let us consider a n -mode quantum mechanical system that is described by the canonical 

conjugate operators ˆ
jx  and ˆ

jp , with 1,2, ,j n  . In terms of the annihilation and creation 

operators ( ˆ
ja  and †ˆ

ja , respectively), one has 

   † †1
ˆ ˆ ˆ ˆ ˆ ˆ   and   

2 2
j j j j j j

i
x a a p a a     , (12) 

which are the dimensionless position and momentum operators. Such operators also satisfy the 

bosonic canonical commutation relations (CCR) 

,
ˆ ˆ ˆ ˆ ˆ ˆ[ , ] ,     [ , ] [ , ] 0i j i j i j i jx p i x x p p   , (13) 

Furthermore, if we group together the canonical conjugate operators in a vector ̂  as 

   1 2 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , ,

T T

n n nr r r x p x p x p     , (14) 

we can express the CCR in a compact form: 

ˆ ˆ[ , ]j k jki    , (15) 

where   is defined as 

1

0 1

1 0

n

i 

  
  

 . (16) 

By combining this CCR relation and the positive semi-definiteness of the density operator  , 

we obtain the following uncertainty relation [35] 

0i    , (17) 

which is a more precise and complete version of the Heisenberg uncertainty relation. This well-

known inequality is the only constraint that   has to respect to be a covariance matrix satisfying a 

physical state. 

Let us consider the physicality of the SY coherent-state protocol by using the uncertainty relation 

in Equation (17). In the EB protocol, as shown in Figure 2, we have: 
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where 
tot line hom T    ,  line 1 T T    ,  hom 1 elv      , and 1AV V  , 

AV  is the 

modulation variance of the Alice’s side. According to the Heisenberg uncertainty relation, we have: 

1
0

0

sym

AB

sym

AB

i

i





   


  

. (20) 

Then, we obtain 
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. (21) 

The two inequalities in Equation (21) are simultaneously satisfied if , 0elv   and  , 0,1T  . 

Here, we further consider the secure and unsecure regions of the protocol for both ideal and realistic 

Bob’s detectors, which are shown in Figure 3a. In the secure region, the secret key rate is greater than 

zero; in the unsecure region, the secret key rate is less than zero. We observe that the realistic protocol 

can provide a bigger secure region. The secret key rate as a function of the excess noise, in 

correspondence of three values of channel losses, under ideal and realistic detection conditions, is 

shown in Figure 3b. We can see that the realistic Bob detection improves the resistance of the protocol 

to the excess noise, although the total noise is increased, which will lead to the appearance of a 

phenomenon called “fighting noise with noise” [36], and will be discussed in detail in the following. 

Here, we set the values of the actual parameters: the reconciliation efficiency is 0.99   [37] and 

the modulation variance is 10AV  . 

 

Figure 2. EB scheme of the SY protocol under realistic conditions. 

 

Figure 3. (a) Secure and unsecure regions of the SY protocol using ideal homodyne detector  

( 1, 0elv   ) and realistic homodyne detector ( 0.6, 0.1elv   ); (b) Secret key rate versus the 

excess noise for different channel losses. 

3.2. Uncertainty Relations for Unidimensional Coherent-State Protocol 

In the above, we have discussed the physicality of the SY coherent-state protocol by using the 

Heisenberg uncertainty relation. The securities under ideal and realistic homodyne detectors have 

also been analyzed. Next, let us consider the UD coherent-state protocol. As shown in Figure 1b, in 

the EB scheme, we have 



Entropy 2018, 20, 157 7 of 14 

 

 

   

1

1

1 1

1 4

y

1 4

linex

y

1 0 1 0

0 1 0

1 0 1 0

0 0

M x M M

B

uni M

AB

x M M x M

B B

y

V T V V

V C

T V V T V

C V




  
 
 

  
   

 
 

 and (22) 

 

   

 

1

1 1

1 4

1 4

totx

hom

1 0 1 0

0 1 0

1 0 1 0

0 0

M x M M

B

M yuni

AB

x M M x M

B B

y y

V T V V

V C

T V V T V

C V






  

  

  
 
 

  
   

 
  

. (23) 

In the UD protocol, in order to estimate the information of the Eve eavesdropping, 
BE , we 

have to know the parameters 1B

yC  and 1B

yV . Here, 1B

yV  can be estimated by randomly measuring 

the phase quadrature in Bob’s side, while 1B

yC  is unknown due to the fact that the phase quadrature 

is not modulated in Alice’s side. However, such an unknown parameter is constrained by the 

requirement of the physicality of the state. Differently from Ref. [30], under realistic condition, when 

the mode 
1B  is transformed into mode B  after the beam splitter, there will have to be a new 

constraint on the covariance matrix uni

AB  in order to make it correspondent to a physical state. 

According to the Heisenberg uncertainty relation, we have 
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Then, we obtain the following two parabolic equations: 
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The parabolic curves between 1B

yC  and 1B

yV , under ideal and realistic detection conditions, are 

shown in Figure 4. The whole plane is divided into two regions: the unphysical and physical regions. 

In the unphysical region, the values of the parameters 1B

yC  and 1B

yV  cannot be satisfied 

simultaneously, otherwise, the Heisenberg uncertainty principle will be violated. In the physical 

region, the whole region is divided into two parts, R1 and R2. The R1 represents the real physical 

region, which is delimited by the ideal parabolic curve and ensures the attacks of Eve to the quantum 

channel complying with the physical principles. The red dashed line further divides the region R1 

into unsecure and secure regions. The R2 represents the pseudo physical region, which is the 

overlapped part between the physical region contained by the realistic parabolic curve and the 

unphysical region, as defined by the ideal parabolic curve. The appearance of the pseudo physical 

region is due to the fact that, even if some attacks of Eve are unphysical, after the transform of the 

realistic homodyne detection of Bob, the final covariance matrix can satisfy a physical state. Hence, 

the physical region should be delimited at the input side of Bob, or equivalently, Bob performs an 

ideal detection. Furthermore, in Figure 5, we see how the physical region delimited by the realistic 

parabolic curve changes according to different conditions of detection efficiency and electronic noise. 

We also compare such regions with the one delimited by the ideal parabolic curve (black solid line in 

Figure 5). We find that the physical region defined by the realistic parabolic curve gradually decreases 
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as the detection efficiency increases and the electronic noise decreases. Therefore, also in this case, in 

order to ensure the physicality of the UD protocol, we select the smaller region R1. 

 

Figure 4. Comparison among physical regions of the UD protocol under both ideal and realistic 

detection conditions. The red solid line represents the realistic parabolic curve (equivalent to Bob 

using a realistic homodyne detector with 0.6, 0.1elv   ) and black solid line is the ideal parabolic 

curve (equivalent to Bob using an ideal homodyne detector with 1, 0elv   ). The red dashed line 

represents the part where the key rate is zero under realistic detection condition. Here, we set: 

0.99  , 0.4xT   (corresponding to a distance of 20 km fiber), 0.01x   and 6.35MV  . 

 

Figure 5. Comparison among physical regions delimited by the parabolic curves of the UD protocol. 

The black solid curve corresponds to the ideal parabolic curve, whereas the others to the realistic 

parabolic curves obtained for different parameter conditions. (a) Changes of the physical region 

extension according to different values of   (
elv  remains constant); (b) Changes of the physical 

region extension according to different values of 
elv  (  remains constant). The values of the 

parameters 
xT , 

x , and 
MV  are the same as in Figure 4. 

In Figure 6, we consider the dependence of the ideal parabolic curve (R1) on related parameters, 

including 
MV , 

xT , 
x , and  . From Figure 6a, we can find that the parabolic curve moves down 

and gradually becomes broader as the modulation variance increases. In Figure 6b, the parabolic 

curve moves towards bottom-left corner and gradually becomes narrower as the transmission 

efficiency increases. In Figure 6c, as the excess noise increases, the parabolic curve moves towards 

left and gradually becomes larger. The reconciliation efficiency   does not change the shape of the 

parabola, but rather expands the secure region. In Figure 6d, the red solid line represents the 

minimum secret key rate, which was obtained by scanning the parameter 1B

yC . The black solid line 

represents the ideal parabolic curve. It is interesting that a larger 1B

yC  does not always give a higher 
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secret key rate, more details about the red solid line can be seen in paper [30]. Later, we can see that 

the minimum secret key rate can also be achieved by scanning 
yT  and 

y  simultaneously. 

 

Figure 6. Ideal parabolic curve versus related parameters. (a) Different modulation variance values 

with 0.1xT   and 0.01x  ; (b) Different transmission efficiency values with 0.01x   and 

3MV  ; (c) Different excess noise values with 0.1xT   and 3MV  ; (d) Different reconciliation 

efficiency values with 0.1xT  , 0.01x  , and 3MV  . 

Furthermore, if we assume  1
1 4

1
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   and 1 1
B

y y yV T   , the parabolic equations 

(Equation (25)), as determined by the Heisenberg uncertainty relation under ideal and realistic 

detection conditions transform into 
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where 
 linex
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 totx

1
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k
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. By this way, more details about eavesdropping 

method taken by Eve can be found. Moreover, one can easily see that the transformed equations do 

not depend on 
MV . We redraw the physical regions delimited by the new curves for different values 

of detection efficiency and electronic noise as shown in Figure 7. We obtain the same rule as in Figure 

5 that the physical region gradually decreases as the detection efficiency increases and the electronic 

noise decreases. Secure and unsecure regions under the realistic detection condition are shown in 

Figure 8. The cyan curve with the secret key rate of zero represents the boundary of two regions. 

Although the parameters 
yT  and 

y  are unknown, they are confined to the curve 1 1
B

y y yV T   , 

which can be estimated by randomly measuring the phase quadrature in Bob’s side, meaning that 

yT  and y  cannot be set simultaneously in other physical places outside this curve. We can see that 

Eve essentially changes the value of the parameter 1B

yC  by controlling the value of 
yT . For a constant 

value of 1B

yV , we can calculate the minimum secret key rate by scanning yT  or y  in the physical 
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region. As shown in Figure 8, the curve corresponding to the minimum secret key rate is divided into 

three parts. The red curve part overlaps with the left boundary of the black solid curve which 

corresponds to the black solid curve in Figure 6d. As the value of 1B

yV  increases, the worst-case 
yT  

and 
y  (green curve part) gradually separate from the black solid curve, meaning that the secret key 

rate of the protocol is not always monotonically decreasing as 
y  increases or 

yT  decreases, but 

still lie in the secure region. The blue curve represents the part where the minimum secret key rate is 

less than zero. We also find that this minimum secret key rate is equal to the minimum secret key rate 

that was obtained by scanning 1B

yC  (corresponding to the red solid line of Figure 6d) when other 

parameter values are set to be consistent. 

 

Figure 7. Comparison among physical regions delimited by the new curves of the UD protocol. (a) 

Changes of the physical region according to different values of   (
elv  remains constant); (b) 

Changes of the physical region according to different values of 
elv  (  remains constant). The other 

parameters are 0.99  , 0.1xT  , 0.01x  , and 3MV  . 

 

Figure 8. Secure and unsecure regions of the UD protocol under realistic detection condition. The 

parameters are set to 0.99  , 3MV  , 0.1xT  , 0.01x  , 0.6  , and 0.1elv  . 

In typical communication channels, the value of 1B

yV  can be estimated by setting 

1 1 1.001
B

y x xV T    , which is plotted with the black dashed line of Figure 8. At the black point, the 

conditions 
x yT T  and 

x y   are satisfied. The red point represents the worst-case 
yT  and 

y , 

which is the intersection of the red line and black dashed line. Because Eve can distinguishes 
yT , 

y  

from 
xT , 

x  by measuring coherent states sent by Alice, she can arbitrarily change the values of 
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both 
yT  and 

y , while keeps 1B

yV  unchanged, eventually, obtains more information. If Alice and 

Bob use 
xT  and 

x  to estimate 
yT  and 

y  (black point), then this will underestimate the ability 

of the eavesdropper Eve and provide security loopholes. Therefore, here we should consider the 

minimum secret key rate (red point). 

In Figure 9, the curves representing the maximal tolerable excess noise versus the channel losses 

under ideal and realistic detection conditions are shown. We observe that the UD protocol has a lower 

tolerance to the excess noise than the SY protocol. However, the UD protocol reduces the complexity 

of the experiment and still provides a reasonable secure region (all of the parameters are set under 

the actual conditions). 

In addition, from Figure 9b, it is not difficult to find out that the realistic Bob’s detection can 

slightly increase the secure region of the UD protocol. This effect can be explained by considering the 

fact that the noise added on Bob’s side not only affects Alice’s and Bob’s mutual information, but also 

decreases Eve’s information in reverse reconciliation. Due to the detection at Bob’s side, which can 

be controlled and observed by Bob, the noise added on Bob’s side could be considered as a believable 

noise not controlled by the eavesdropper Eve. Moreover, it is found that there is an optimal noise 

hom  (characterized by the detection efficiency   and electronic noise 
elv ) that Bob needs to add to 

maximize the secret key rate for each channel loss. Then, we can effectively improve the secret key rate 

and increase the transmission distance by adding proper noise to Bob’s side, as we show in Figure 10. 

 

Figure 9. (a) Comparison between secure and unsecure regions for the SY coherent-state protocol and 

UD coherent-state protocol under different detection conditions; (b) Secure and unsecure regions of 

the UD protocol using an ideal homodyne detector ( 1, 0elv   ) and a realistic one (

0.6, 0.1elv   ). Here we consider 3MV  , 0.99  , and the estimated value 1 1
B

y x xV T   . 

 

Figure 10. (a) Minimum secret key rate as a function of the channel losses; (b) Optimal choice of 
hom  

that maximizes the secret key rate in (a). The other parameters are 0.99  , 0.04x  , 3MV  , 

and 1 1
B

y x xV T   . 
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4. Conclusions 

In this paper, we have proven the equivalence between the EB scheme and the PM scheme of 

the UD CV-QKD protocol, and investigated the physical and secure regions of the SY coherent-state 

protocol based on the Heisenberg uncertainty relation. It was shown that the realistic detection 

condition in UD protocol results in an excess pseudo physical region, which corresponds to the 

unphysical attack of Eve. In order to ensure the physicality, we should select the physical region 

delimited by the ideal curve. We also found that a realistic Bob’s detection improves the resistance of 

the protocol to the channel excess noise, therefore, the performance in terms of the secret key rates 

and transmission distances of the UD coherent-state protocol can be improved by adding an optimal 

noise to the reconciliation side. Overall, the results confirm the potential of a long-distance secure 

communication through the usage of the UD CV-QKD protocol. 
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