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Abstract

®

CrossMark

The fluctuation of contrast caused by statistical noise degenerates the temporal /spatial resolution
of laser speckle contrast imaging (LSCI) and limits the maximum speed when imaging. In this
study, we investigated the application of the anisotropic diffusion filter (ADF) to temporal LSCI
and found that the edge magnitude parameter of the ADF can be determined by the mean of the
contrast image. Because the edge magnitude parameter is usually denoted as K, we term this the
K-constant ADF (KC-ADF) and show that temporal sensitivity is improved when imaging
because of the enhanced signal-to-noise ratio when using the KC-ADF in small-animal
experiments. The cardiac cycle of a rat as high as 390 bpm can be imaged with an industrial

camera.

Keywords: laser speckle contrast imaging, temporal resolution, anisotropic diffusion filter,

signal-to-noise ratio, speed sensitivity
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1. Introduction

Laser speckle contrast imaging (LSCI) allows the move-
ment of scatters—and hence blood flow—to be imaged via
the spatial and temporal variations in interference that
result. Ideally, LSCI contrast values should be identical in
areas with the same particle velocity distribution, but in
reality there are fluctuations caused by statistical residuals
that result in speckle contrast noise. Duncan et al investi-
gated the statistical properties of local contrast and found
that it follows a log-normal distribution [1]. This contrast
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noise degrades the appearance of in vivo contrast images,
especially when the blood vessels are small and the change
of blood flow speed is small; sometimes the contrast
changes introduced by the flow speed in the vessel area can
be obscured by the contrast noise.

Different methods have been investigated to increase the
signal-to-noise ratio (SNR) and spatial or temporal resolution.
Averaging temporal contrast over a spatial window
(taygSLSCI) [2] and averaging spatial contrast values over a
temporal window (S,,tLSCI) [3], calculating the contrast
while taking both temporal and spatial changes into con-
sideration (stLSCI) [4], and simply increasing the number of
frames for the calculation have been investigated. Miao et al

© 2018 IOP Publishing Ltd  Printed in the UK
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utilized the concept of histogram equalization over a sequence
of contrast images to enhance the contrast image [5]. They
later proposed a method using a random process estimator to
improve the SNR and spatiotemporal resolution [6]. Qiu et al
[7] compensated for the contrast bias introduced by the
speckle size to improve the SNR and spatial resolution, which
is also demonstrated in reference [8]. In the frequency
domain, Zeng et al calculated the intensity fluctuation
modulation instead of the contrast and recovered higher
spatial resolution than that in conventional contrast images
[9]. These methods either depend on larger data-sets or
compromise spatial-temporal resolution to achieve the
desired results.

To preserve the structure of vessels, Rege et al intro-
duced anisotropic processing to calculate the contrast along
the blood flow direction [10] and Li et al combined seg-
mentation [11], a rigid-tracking algorithm [12] and speckle-
reducing anisotropic diffusion (SRAD) [13] to improve spa-
tial-temporal resolution.

Anisotropic diffusion filtering (ADF) is a common
method for removing speckles in ultrasonic imaging
[13-15]. Compared to other common spatial filters such as
the Gaussian filter, it is an edge-sensitive averaging filter.
The smoothing is perpendicular to the detected edges,
therefore preserving the spatial structures while removing
noise. So it is ideal for the smoothing of LSCI images and
for preserving vessel structure. In contrast with SRAD, it is
able to remove additive noise and is easier to apply. Further
improvements in basic Perona—Malik ADF [16] have been
proposed such as robust ADF [17] and median-boosted
anisotropic diffusion techniques [18], to determine the filter
parameters more accurately and robustly and to optimize the
performance of the filter. In these methods the edge mag-
nitude parameter (K) is the key to the design of the filter
and its output. It is usually manually chosen, set by a noise
estimator such as a canny noise estimator or determined
from Pratt’s figure of merit [19].

In this paper, we investigate the application of ADF to
LSCI images and demonstrate that the K value can be
simply determined by the mean of the contrast image based
on the cumulative density function (CDF) of the gradients
of the contrast image. We also demonstrate that a K value
between 0.17 and 0.254 for the processed contrast image
results in no obvious image degradation. This suggests the
possibility of using a constant K value for all contrast
images. We call this ADF the K-constant anisotropic dif-
fusion filter (KC-ADF). In addition, we require three
speckle frames for a single temporal contrast image calc-
ulation and two of the three frames may be reused for the
next adjacent contrast image calculation. We imaged the
contrast changes during a rat cardiac cycle, demonstrating
an improvement of the speed sensitivity and temporal
resolution. This method will prove to be a useful tool for
imaging high-velocity changes and will benefit the detec-
tion, diagnosis, characterization and treatment of blood
circulatory diseases particularly in animal models.

2. Methods

2.1. Filter design

The ADF used in this paper is based on the Perona—Malik
diffusion kernel with four neighborhoods [16, 17]:

C(,j.n+ 1)=C(@,j, n) + Adx - VCy + ds - VCs
+dg - VCs + dw - VCy).
(D

It is an iterative process where C (i, j, n) is the contrast
value at pixel (i, j) in the nth iteration, which has the raw
speckle contrast image as the initial input; A is the rate of
diffusion and is taken as 0.25 because we use four neigh-
borhoods (pixels in the north, south, east and west directions);
VC stands for the contrast gradients that are calculated from
the value difference between adjacent pixels in specific
directions; d denotes the diffusion coefficients; and the sub-
scripts N, S, E, and W denote the directions north, south, east
and west. The value of d in each direction can be calculated
from the contrast gradient in that direction according to the
following equation:

d= —|1VC| > 2)
L+ (5

where K is the edge magnitude parameter, the gradient
threshold that determines whether the value will be increased
or decreased during processing. As is mentioned above, a
canny noise estimator finds the proper threshold K for a whole
image; we borrowed the concept wherein the values taking up
90% of the CDF are valid and others are noise [19, 20] to
investigate the value of K for differently blurred speckle
images. For this purpose, a simulation was first implemented
using speckle images synthesized with the method described
in [20]. From the simulation, the relationship between the
proper K value from the CDF and the mean of the contrast
image was fitted and the result was then used for the in vivo
experiment (see next sections). The CDF was calculated from
the gradient of the contrast. The whole-image processing was
implemented with Matlab.

2.2. Temporal-resolution-improved contrast image calculation

Contrast was calculated based on a statistical analysis, so the
higher the number of samples used, the closer the result was
to the estimate. Including more frames in tLSCI decreases the
temporal resolution of the system; in contrast, including fewer
frames increases the deviation of the contrast estimate and
introduces a higher noise level. Therefore, we attempt to
increase the temporal resolution by minimizing the time
between two adjacent contrast images and decrease the
deviation with the ADF.

Three frames are the minimum number of frames that can
be used to calculate tLSCI. Therefore to improve the temporal
resolution of tLSCI, three raw speckle images were included
for calculating a single contrast image, and the two latter
speckle images were subsequently reused in the calculation of
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Figure 1. (a) Representation of raw stLSCI contrast image
generation. (b) The experiment setup for imaging a rat ear.

the next adjacent contrast image [10]. In this way, the tem-
poral resolution can be improved to be equal to the frame rate
of the camera. The flow chart of the raw contrast calculation is
shown in figure 1(a), where the speckle images are labeled fn,
the raw contrast images are labeled Cr, and the subscripts ‘1,
2, 3...” denote the frame index. For example, Cl1 is calculated
from the first three speckle frames f1, f2 and f3; C2 is cal-
culated from 2, f3, and f4, etc.

Therefore the calculation of the contrast can be expressed
as:

1 -
Engji(I(x,y),m - 'L‘(x,_v),i)z

3)

Coyi = u
[ERYN

where C, ), is the contrast value at pixel (x, y) in the ith
contrast image, i = 1,2,3 --- ; Py is the mean intensity
value of three successive speckle frames at pixel (x, y) and is
calculated from:

Sty
,u’(x,y),i = = 13/\ = 5 (4)

and I ), is the intensity of pixel (x, y) in the mth speckle
image.

3. Simulation

In this section, the speckle image generation used the simu-
lation method described in [21] and the speckle size was
equal to 3 pixels [22].

An initial simulation examined the relationship between
the mean contrast and the value of K, i.e. the contrast gradient
value when the CDF of the gradient of the contrast was equal
to 0.9. It can be understood that the faster the flow speed, the
more blurred the speckle image and therefore the lower the
contrast and contrast gradient. We synthesized 20 stacks of
speckle images, where each stack contained three speckle
frames, between which the correlation coefficients were
identical and predefined. The correlation coefficients used for
the 20 stacks were 0.05 to 1 with an increment of 0.05. Then
the temporal contrast of every stack was calculated followed
by the calculation of the CDF of the contrast gradient and the

mean of every contrast image. The value of K was extracted
and the function between these K values and the mean con-
trast was analyzed.

In a second simulation, an initial spatial correlation map
was defined and three fully developed speckle images were
synthesized. The correlation distribution between these three
speckle images and the reference speckle image was the initial
correlation map multiplied by three correlation coefficients
0.95, 0.75 and 0.55 respectively for the defined regions of the
image. As a result, we simulated a temporal sequence of three
speckle images with a predefined spatial and temporal cor-
relation distribution. The temporal contrast was calculated
from these three speckle images. The three correlation coef-
ficient values were specifically chosen to generate a contrast
image with clear variations in spatial contrast. Then ADFs
with different K values were applied to the contrast images to
evaluate the noise deduction effect of the ADFs in the image
domain.

4. In vivo experiment

A Sprague Dawley rat was anesthetized by injecting 10%
chloral hydrate solution (0.3 ml /100 g) prior to the experi-
ment. An electrocardiogram (ECG) of the heartbeat was
acquired and recorded with the Matlab system (Manjing
Medease Science and Technology Co., Ltd) to compare with
the results from the laser speckle contrast calculation. The
experiment was conducted under approved guidelines and
was reviewed by the institutional animal use committee of the
Second Affiliated Hospital of Tianjin University of TCM. The
ear of the rat was fixed on a solid block and was parallel with
the optical table to isolate undesired movement.

The setup is shown in figure 1(b). The laser beam
(671 nm, Changchun Laser Optoelectronics Technology Co.,
Ltd, China) was expanded to a diameter of 10 mm and illu-
minated the ear of the rat via a beam splitter. The rat ear was
imaged by an achromatic lens (f = 50 mm, China Daheng
Group, Inc.) and captured by a CMOS camera (1040 x 1280,
Flea 3 USB 3.0, Point Grey, Canada). The filter and the
polarizer in front of the camera removed environmental light
and preferentially passed light of the same polarization state
as the illumination. Because rat cardiac frequency is usually
higher than 300 bpm, the camera was run in a binning mode
of 2 x 2 pixels to achieve its maximum frame rate of 81 fps
at an exposure time of 1 ms. The exposure time was set to be
as short as possible but supplying decent brightness in the
speckle image (1 ms). The speckle size was about 4 camera
pixels in area to give one speckle per output image pixel after
the 2 x 2 bin, smaller than the ideal case but providing higher
spatial resolution and the advantage of higher intensities from
the binning.

The raw temporal contrast images were calculated with
the Matlab functions mean and std. The contrast difference
between the areas containing a vessel and the surrounding
areas was calculated and averaged over the area of interest
(AOI) to get the relationship between the contrast difference
and time. The contrast difference was defined with the
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Figure 2. (a) The relationship between the CDF and the contrast values. (b) The relationship between the K values and the mean contrast of
the speckle image. The K value is the value when the CDF is equal to 0.9.

following formula to remove environmental influences:
CGi=C - C, )

where Cy denotes the contrast difference, C, represents the
mean contrast in the vessel area and C denotes the mean
contrast in the surrounding area. In the image domain, the raw
contrast images were calculated according to the procedure
shown in figure 1(a) and KC-ADF with 50 iterations was
applied.

5. Results

5.1. Simulation

The first simulation analyzed the relationship between the K
values and the mean contrast. As described in the methods
section, 20 stacks were simulated; therefore 20 curves of the
CDF versus the gradient of the contrast were calculated,
together with 20 mean contrast values ranging from 0.103 85
to 0.79053. Eight of the 20 CDF curves are shown in
figure 2(a), to show how the CDF changes with the mean
contrast. As shown, the value of the contrast gradient, when
the CDF was equal to 0.9, increased with the mean contrast.
The gradient values when the CDF was equal to 0.9 were
extracted, although this was only an approximation due to the
resolution limit of the CDF. These extracted K values are
plotted as a function of the mean contrast in figure 2(b), and
ranged from 0.03 to 0.254 when the mean contrast changed
from 0.103 85 to 0.790 53. The simulation data were fitted to
a polynomial f(x) = ax’ + c.

This provides guidance for choosing the K value
according to the mean contrast. Although the mean contrast in
real experiments is an average over both the vessel and the
surrounding areas, which is higher than the mean contrast
values from vessels alone, we prove in the following para-
graphs that K values larger than those from the fitting result
do not introduce observable influence in the contrast images.

In the second simulation, the contrast image was calcu-
lated, as shown in figure 3(b), and the line profile along the
middle (900th) row of the raw contrast image is shown in

figure 3(d). Because the central area has lower correlation
coefficients, the contrast is lower in this region, although the
contrast noise is higher than the contrast difference introduced
by the change of correlation coefficients. The mean contrast
of figure 3(b) is 0.4357, and therefore K was assigned the
value of 0.17 according to the fitted equation in figure 2(b).
The ADF-processed image with K equal to 0.17 using 50
iterations is shown in figure 3(c). Different values for K from
0.1 to 0.254 with an increment of 0.01 were tested, and the
line profiles of the 900th row of the initial correlation matrix
for the processed contrast images with K equal to 0.1, 0.17,
and 0.254 are shown in figure 3(e). It was found that when the
K value was 0.1, the line profile had higher noise than that
from K equal to 0.17, which means noise reduction was not
sufficient. More iteration runs can further reduce the noise in
this situation but with long processing time and loss of small
structures. The results for K values of 0.17 and 0.254 are
almost identical except that there are more small fluctuations
when K is equal to 0.254, as can be observed in the magnified
image in figure 3(f). This is because a lower K value is more
proper in these fluctuating areas since the mean contrast
values are lower. However, due to the high spatial frequency
of these fluctuations, a 3 x 3 smoothing filter can remove
them without significant image blurring, as demonstrated in
section 5.2. Another option is to introduce regional adaptive
calculation to apply varied K values across different regions
of the image according to local contrast values.

ADF can therefore preserve the spatial correlation dis-
tribution. In addition, to simplify the selection of K values, a
constant between 0.17 and 0.254, with an optional 3 x 3
smoothing filter, can be applied to all contrast images.

5.2. The effect of K on the ADF performance in the result of
LSCI in vivo

The raw contrast image calculated from three consecutive
speckle images of the in vivo experiment is shown in
figure 4(a). The mean of the contrast image is 0.3078;
therefore the K value according to figure 2(b) is about 0.13.
We applied ADF to the raw contrast image with K equal to
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Figure 3. Simulation results: (a) the initial correlation matrix (1800 x 1800 pixels); (b) the raw contrast image; (c) the ADF-processed
contrast image with K equal to 0.17; (d) the line profile of the raw contrast along the 900th row; (e) the line profile of the original correlation
map and ADF-processed contrast images with K equal to 0.1, 0.17, and 0.254 along the 900th row; and (f) expanded figures of the curves
from within the orange square in (e).
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Figure 4. ADF-processed contrast images with different values of K: (a) the raw contrast image; (b) K is equal to 0.13; (c) K is equal to 0.05;
(d) the line profile of the raw contrast along the row marked with the white line in (b); (e) the line profile of the same row in (d) with K equal
to 0.05, 0.13 and 0.254; and (f) the zoomed-in view of the area marked with a black square in (e).

0.13, 0.254 and 0.05 to compare the effect. The contrast contrast image with K equal to 0.254 (not presented) is almost
images with K equal to 0.13 and 0.05 are shown in identical to the one with K equal to 0.13. Then the line profile
figures 4(b) and (c). Both 0.13 and 0.05 can remove the along the 125th row of the raw contrast image is shown in
contrast noise in the image domain but there are white pixels figure 4(d), which is overwhelmed by noise. The line profiles
in figure 4(c) indicating that 0.05 is not the best value. The of the other processed images are shown in figure 4(e). The
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dashed blue line is the result with K equal to 0.05, and the
fluctuations correspond to the white pixels in the image
domain. The red dashed line and the green line are the result
with K equal to 0.13 and 0.254 respectively. As in the
simulation these two lines are almost identical, except that
there are more deviations visible for the green line when
viewed with a larger scale in figure 4(f). This also explains
why the contrast images with these two K values look
identical.

The experimental results suggest again that in an image
domain the value of K can be chosen according to figure 2(b),
or simply from a range between the value -calculated
according to the mean contrast and 0.254. This will not
change the appearance of the contrast images. Then in the
following experimental data process, we used 0.23 to extract
the heartbeat of the mouse.

KC-ADF was further tested using higher-than-optimal K
values and using an averaging filter to calculate a final con-
trast image. The temporal contrast was initially calculated
from 40 speckle frames acquired with the same experimental
setup but with an exposure time equal to 20 ms to produce
low contrast values. According to figure 2(b), the mean value
of the contrast image decreased to 0.179 corresponding to a K
value of 0.074. When applying KC-ADF using a larger K
value of 0.23, more fluctuations were expected; therefore we
additionally applied a median filter (3 x 3 pixels) to the
contrast image. Figure 5(a) shows the raw contrast image.
Figures 5(b)—(d) are the processed contrast images with

K =0.074, K = 0.23 and K = 0.23 and additional median
filtering. They are nearly identical to the eye, but the line
profile for K = 0.23 exhibits more fluctuations than the other
two lines, as expected. The line profile of K = 0.23 plus a
median filter shows less fluctuation than that with the ‘ideal’
K value.

5.3. Measurement of rat heartbeat

The contrast difference was calculated according to
equation (5) for the AOI in the vessel and surrounding tissue
marked with yellow and red rectangles respectively in
figure 4(b). Because the contrast in the surrounding area is
subtracted from that in the vessel area, higher contrast dif-
ference values correspond to higher flow speeds. The contrast
difference as a function of time is shown in figure 6(a). It
exhibits periodic changes although the shape of the period is
not perfect due to noise or the raw speckle images and the low
temporal resolution. The power spectrum of the contrast
difference and that of the ECG measurement are shown in
figure 6(b). The peak frequencies of the LSCI and the ECG in
figure 6(b) are close, with values of 6.2Hz and 6.8 Hz
respectively. There are two factors that induced the 0.6 Hz
difference. One is the noise in the contrast values as a func-
tion of time. Changing the AOI used to calculate the contrast
difference can introduce a frequency shift in the range of
£0.2 Hz. This is because of the low SNR in the raw speckle
images, which will be elaborated in the discussion section. In
addition the cardiac period slightly changes over time.
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Figure 6. (a) Contrast difference as a function of time, which shows the heartbeat of the rat; (b) the frequency spectrum of (a) and the ECG
measurement. The red dots mark four time points demonstrating the contrast changes within a cardiac period.
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Table 1. Comparison between the four contrast calculation methods.

KC-ADF stLSCI SavgtLSCI tavgSLSCI
First frame contrast (Mean + Std) 0.127 £ 0.0087 0.146 + 0.048 0.134 £+ 0.043 0.133 £ 0.047
Fourth frame (Mean) 0.09 0.1344 0.0905 0.1214
Contrast change 0.0362 0.0115 0.0434 0.0111
rSNR 4.185 0.238 1.019 0.243
Improvement of KC-ADF in rSNR — 17.584 4.107 17.222
Window (Ng X Ny x N,) 3x3x%x3 3x3x3 3x3x3 3x3x3
p-Value for improvement of KC-ADF in rSNR <0.0001 0.000 15 <0.0001

To demonstrate the improved speed sensitivity and
temporal resolution of KC-ADF in an image domain,
KC-ADF, stLSCI, s,,,tLSCI and t,,,SLSCI were applied to
the speckle images and the results of four time points marked
as red dots in figure 6(a) were chosen to compare these four
methods using a kernel size equal to 3 x 3 x 3
(Ns x Ng x Np. In KC-ADF, K was equal to 0.23 and there
were 50 iteration runs. We chose four AOIs from large and
small vessels and averaged the contrast difference Cy, the

standard deviation (std) of Cy, and the contrast changes
between the first and fourth frames over the four AOIs. The
results are shown in figure 7 and the data are listed in table 1.
It is clear from figure 7(a) that KC-ADF gives the smallest
std, only 18% of those of the other three methods, meaning
that KC-ADF has the best noise-suppressing effect. To dis-
play the cardiac cycle, the contrast changes need to be larger
than the noise, and we define the relative SNR (rSNR) as the
contrast change divided by the std to evaluate the ability to
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second row: stLSCI contrast difference images and line profiles; third row: s,,,tLSCI contrast difference images and line profiles; bottom
row: KC-ADF-processed tLSCI contrast difference images and line profiles with K equal to 0.23. From (a) to (d): the contrast difference
images corresponding to the four time points from left to right shown in figure 6(a).

detect the cardiac cycle. Figure 7(b) shows that although KC-
ADF has smaller contrast changes than s,,,tLSCIL, it produces
the highest rfSNR thanks to the low std. The rfSNR of KC-
ADF (4.185) is nearly 18 times that of tLSCI (0.238) and 4
times that of s,,tLSCI (1.019) (p < 0.000 15; one-sided
Student -test). The methods of stLSCI and t,,,SLSCI have
similar performance in terms of rSNR. Table 1 lists the values
of the parameters in figure 7.

The images of the contrast difference at the four time
points are shown in figure 8 to further demonstrate the
improved speed sensitivity and the temporal resolution in the
image domain. Again, higher contrast difference values cor-
respond to higher flow speed. Pseudo-colors were added
corresponding to the contrast difference values. The top row
shows the contrast difference images of the raw tLSCI. Due to
the low SNR, the contrast changes over time are barely
detected. The second row shows the contrast difference from
stLSCI. Although the SNR increases compared to that of the
tLSCI, the speed changes are still unperceivable due to the

low rSNR. The third row shows the contrast difference image
with s,,,tLSCIL. The cardiac cycle can be identified from the
decreased area of red color. This can be explained by the
increased rSNR, which is four times that of stLSCI according
to table 1. But since red color exists in all the four frames,
SavgtLSCI cannot totally distinguish the speed changes.
Compared with the fourth row, the noise with s,,,tLSCI is
still high. In the fourth row, the results with KC-ADF exhibit
totally different colors changing from red to yellow in the
vessel area during half a cardiac period and therefore clearly
show the flow speed changes introduced by the heartbeat.
The line profiles along line p1-p2 of the contrast in frame
1 and frame 4 for the three processing methods are provided
on the right side of figure 8. Clearly the contrast change
between the two frames is obscured by noise for tLSCI. It is
possible to detect a slightly larger contrast difference for the
large vessel for frame 1 compared with frame 4 with
SavgtLSCL. The line profiles for KC-ADF are clearly
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Figure 9. The performance of KC-ADF with different numbers of iterations. (a) The mean contrast difference changes and the std as a
function of the iteration runs; (b) the rSNR as a function of the iteration runs.

distinguished for the vessels, which is consistent with the
observable color changes in the contrast images.

The contrast difference was calculated from three suc-
cessive speckle frames, that is, the minimum number for
contrast calculation, and the KC-ADF-processed contrast
images display contrast changes that cannot be identified with
the other methods; therefore, the temporal resolution and the
speed sensitivity are improved.

5.4. Number of iterations

It is known that the number of iterations of ADF impacts
performance. Therefore we investigated the std and the con-
trast changes as a function of iteration runs from 1 to 50 with
a K value of 0.23. The results are shown in figure 9(a). The
changes of mean contrast between the first frame and the
fourth frame slightly decrease with the increase of the itera-
tion runs, but the std of the contrast difference decreases
sharply when the iteration runs increase from 1 to about 7 and
then decreases slowly. Theoretically the mean contrast
changes from the speed difference can be easily identified in
the image domain when the rSNR is higher than 2, i.e. the
mean contrast change is over the high or the low limit of the
std. From figure 9(b), the rfSNR of KC-ADF increases to
higher than 2 when the number of iterations is 5. The rSNR of
KC-ADF is higher than that of s,,,tLSCI only after running
two iterations according to figure 9(b). Running more itera-
tions can maximally remove statistical residual noise. This
does not introduce a significant border blur because ADF
smooths the image perpendicular to the vessels. The proces-
sing time of KC-ADF in our experiment, using a 3.4 GHz
Intel i7 desktop computer for an image size of 322 x 361
pixels, increased from approximately 0.07 to 0.24 s when the
number of iterations was increased from 2 to 50. When the K
value was calculated from the mean contrast instead of
retaining the fixed value of 0.23, the processing time was still
in the same range.

6. Discussion and conclusion

The noise level can be suppressed by using a low-noise
camera but statistical residual noise is inevitable. In addition,
decreasing the number of speckle images for calculating one
frame of a temporal contrast image is still desirable to achieve
higher temporal resolution. This will unavoidably induce
higher statistical residuals, i.e. contrast noise. Therefore our
method is also applicable to this situation. In this paper we
demonstrate better speed sensitivity and temporal resolution
than current spatial averaging and temporal—spatial averaging
imaging techniques when the speckle images are acquired
with the same experimental setup.

The CMOS camera used in the experiment was industrial
grade. The dark current increased during the data acquisition
because the camera’s temperature increased. In addition, to
achieve a high frame rate the pixels were binned, increasing the
dark current noise. The 1 ms exposure time and the laser power
restriction for the animal experiment limited the signal intensity.
In the end, the background intensity was as high as 50 (gray-
level digital number) when the signals were around 100.
Therefore the contrast images show very low SNRs, especially
when only three speckle frames were included in the calcul-
ation. This also explains why in figure 6 the three phases
corresponding to the cardiac diastole, atrial systole and ven-
tricular systole stages are not visible for all periods in
figure 6(a). But the frequency of the heartbeat was clearly
caught and KC-ADF greatly improved the quality of contrast
images even when the SNR of the raw speckle images was low.

In figure 4, the proper K value of 0.13 was calculated based
on the mean of the contrast image according to the relationship
shown in figure 2(b). Since the simulation and the experiment
in vivo may not be the same, we calculated the CDF of the
gradient of figure 4(a) and located the K value when the CDF
was equal to 0.9. Thus, the K value is 0.148, slightly higher than
0.13, but this divergence does not introduce a perceivable dif-
ference in the processed images. This further suggests the
applicability of the relationship in figure 2(b).
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Figure 10. Demonstration of the noise reduction of KC-ADF in contrast images calculated from 200 speckle frames. (a) The raw contrast
image calculated from 200 speckle frames; (b) the KC-ADF-processed contrast image in (a) with K equal to 0.23; (c) the contrast profile

along the yellow line in (b), showing clear noise suppression.

Figure 11. Areas for the comparison of the improvement of KC-ADF
enhancement for large and small vessels.

In the above sections, we showed the effect of KC-ADF
on contrast images calculated from three speckle frames. Here
we demonstrate the noise reduction effect of KC-ADF on a
contrast image calculated from 200 speckle frames, as shown
in figure 10. The noise of the raw contrast image from 200
frames in figure 10(a) is lower than that of the contrast image
from three speckle frames shown in figure 4(a). However the
KC-ADF-processed contrast image in figure 10(b) still shows
an obvious noise suppression effect, which can be seen in the
line profile presented in figure 10(c).

To investigate whether the noise suppression effect was
different for large and small vessels, we took the raw and
KC-ADF-processed contrast images in figures 8(a) and (d)
and manually chose areas covering parts of the larger and
smaller vessels. The areas for comparison are shown in
figure 11 with the test parameters listed in table 2. SNR
improvement (the SNR of the KC-ADF-processed image
divided by the SNR of the raw image) is much greater for the
small vessel (about 16 times) than for the large vessel (9—10
times). This is because the noise level in the small-vessel area
in the raw images is higher and accordingly KC-ADF pro-
duces the best improvement. The rfSNR improvement (the
rSNR of the KC-ADF-processed image divided by the rfSNR
of the raw image) of the small vessel is also greater than that

10

of the large vessel with values of 19.11 and 11.82
respectively.

As mentioned in the introduction, Rege has provided an
anisotropic processing method (aLSCI) for speckle images.
Compared to KC-ADF, this method provides better vessel
border sharpness, but it has the disadvantages of increased
time and calculation complexity, depending on a pre-tLSCI
calculation from at least 75 speckle images for a good result.
In addition, the improvement of alLSCI in SNR is smaller than
that of KC-ADF. Another SNR improvement method, the
random estimator method proposed by P. Miao [7], also
provides good vessel border sharpness, but the improvement
in SNR is several times smaller than that of KC-ADF.

KC-ADF is based on the spatial averaging of noise, so it
does not change the statistical expectation of the contrast.
Therefore KC-ADF has the same measurement range as
tLSCI for the same experimental setup if the analysis is based
on contrast expectations. But the visible range and temporal
resolution are improved with KC-ADF because of the
improved rSNR. The rSNR of KC-ADF is nearly 18 times
that of tLSCI and 4 times that of s,,,tLSCI. The spatial
resolution in this paper means the smallest vessel size that can
be distinguished in the speckle contrast images. It is affected
by both the spatial resolution limit from the imaging system
and the noise level of the contrast images. Because KC-ADF
spatially averages the noise, the spatial resolution limit from
the imaging system is the same as that of the raw speckle
contrast images. But because noise is reduced, smaller vessels
can be distinguished—for example, more vessels are dis-
played in figures 5(b)—(c) than in figure 5(a). However it can
also be noted that the improvement of the SNR of KC-ADF
comes at the cost of image sharpness due to the averaging
effect and fewer iteration runs can better preserve sharpness.

KC-ADF is an image processing method, so the quality
of the processed image is limited by the quality of the raw
speckle and raw contrast images. A higher image acquisition
frame rate and shorter exposure time are necessary for cap-
turing fast changes in flow speed, but this may decrease the
SNR of the speckle images due to the lower signal intensity
and consequently decrease the SNR of the contrast images. A
stable experimental environment is important especially when
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Table 2. Comparison between large vessel and small vessel.

Figure 8(a)

Figure 8(d)

Large vessel

Small vessel Large vessel Small vessel

Raw mean =+ std 0.16 £ 0.11
SNR (mean/std) 1.45
rSNR 0.30
KC-ADF mean =+ std 0.15 £ 0.01
SNR (mean/std) 13.18
rSNR 3.54
SNR improvement  9.12 16.58
rSNR improvement  11.82 19.11

0.07 £0.15 0.12£0.11 0.05 £ 0.14
0.51 1.12 0.35
0.17

0.08 £0.01 0.11 £0.01 0.05 + 0.01
8.40 11.32 5.55
3.21

10.08 1591

the contrast is calculated from time-sequential speckle
images.

In conclusion, in this paper we demonstrate that KC-ADF
can suppress contrast noise. In contrast to other methods for
determining the parameter K for ADF, KC-ADF can select the
K value only based on the mean contrast and a value between
0.17 and 0.254 was found to effectively suppress contrast noise.
A median filter of 3 x 3 pixels is an option to remove the
fluctuations introduced by high K values although this is not
necessary for imaging. Combining KC-ADF and contrast
calculation with three sequential speckle images, speed sensi-
tivity and temporal resolution are improved because of an
enhanced SNR compared with those of StLSCI, s,,,tLSCI and
tayeSLSCI. The rat heartbeat as high as 390 bpm was captured
and illustrated in the image domain based on low-SNR speckle
images recorded by an industrial camera.
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