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Observation of Floquet bands in driven spin-orbit-coupled Fermi gases
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Periodic driving of a quantum system can significantly alter its energy bands and even change the band topology,
opening a completely new avenue for engineering novel quantum matter. Although important progress has been
made recently in measuring topological properties of Floquet bands in different systems, direct experimental
measurement of full Floquet band dispersions and their topology change is still demanding. Here we directly
measure Floquet band dispersions in a periodically driven spin-orbit-coupled ultracold Fermi gas using spin-
injection radio-frequency spectroscopy. We observe that the Dirac point originating from two-dimensional spin-
orbit coupling can be manipulated to emerge at the lowest or highest two dressed bands by fast modulating Raman
laser frequencies, demonstrating topological change of Floquet bands. Our work will provide a powerful tool for
understanding fundamental Floquet physics as well as engineering exotic topological quantum matter.
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I. INTRODUCTION

Engineering energy-band dispersions plays a crucial role for
designing quantum materials with novel functionalities. Be-
sides traditional methods in solid state, periodic modulation of
system parameters can significantly alter the band dispersions
of a quantum matter such as turning a trivial insulator into a
topological one [1–3]. Thanks to Floquet theory, such periodic-
driven quantum systems can be described by an effective static
Floquet Hamiltonian, which may exhibit distinct properties
compared to their unmodulated counterparts. Experimentally,
such Floquet band engineering has been recently investigated
in atomic [4,5], photonic [6], and solid-state systems [7].

Ultracold atomic gases, due to their unprecedented tun-
ability, provide an ideal platform for the investigation of
Floquet physics [8]. As a prominent example, by loading
ultracold atoms in a periodically modulated optical honeycomb
lattice, a recent experiment [9] has realized the Haldane model
that exhibits the anomalous quantum Hall effect [10]. So
far, cold-atom experiments have mainly focused on detect-
ing Floquet band structures and their properties indirectly,
such as through atomic transport [9,11,12] along a path in
momentum space, by adiabatically loading bosonic atoms
to band minima [13–16] or by measuring the spin textures
[17]. These experimental techniques may not work at band
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crossing points, which play a crucial role for determining
band topology and its phase transition, and cannot be used
to explore properties of every Floquet band, such as certain
central static bands and all Floquet sidebands. Therefore, a
direct measurement of the Floquet band dispersions, including
the sidebands, in the full momentum space and the change
of their topological properties is highly demanding in atomic
systems.

Dirac points are topological band touching points with lin-
ear dispersions. In two dimension (2D), the topology of a Dirac
point is characterized by the singularity of the Berry curvature
at the point and nonzero Berry phase for a path enclosing the
point in the momentum space. Therefore, Dirac-point creation
and annihilation showcase one type of topological change
of band dispersions of a quantum matter [18]. 2D spin-orbit
coupling (SOC), such as Rashba SOC, naturally possesses a
Dirac point in its band dispersion. It is well known that SOC
plays a key role in many exotic topological materials [19,20].
In ultracold atoms, synthetic one-dimensional (1D) SOC (an
equal sum of Rashba [21] and Dresselhaus [22] SOC) was
first experimentally realized using a pair of counterpropagat-
ing Raman lasers to dress two atomic spin states [23–32] .
Recently, by coupling three internal spin states of ultracold 40K
Fermi gases through three Raman lasers propagating in a plane,
a 2D SOC characterized by the emergence of a Dirac point
has been observed [33] (recently, 2D SOC was also realized
using a lattice-based scheme [34]). Furthermore, an energy gap
which is crucial for the investigation of topological physics in
ultracold-atomic gases can be generated at the position of the
Dirac point by tuning the polarization of the Raman lasers [35].
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In this article, we utilize 2D spin-orbit-coupled Fermi gases
as a platform to investigate Floquet band engineering. By
periodically modulating the detunings of two Raman lasers
through their frequencies, we can manipulate the strength
and even the sign of the Raman coupling of the effective
Floquet Hamiltonian and therefore modify the position of the
Dirac point in the Floquet band. For suitable modulations,
the Dirac point initially located at the lower two dressed
bands can disappear and then emerge at the upper two bands,
indicating a topological change of the Floquet band structure.
Using spin-injection radio-frequency (rf) spectroscopy, we
directly measure the full Floquet band dispersions and observe
their topology change induced by such modulations [36] in
experiment. We find that the resulting Floquet bands and their
topology change depend strongly on the relative phase between
two modulations of two Raman laser detunings. Our results
showcase the 2D spin-orbit-coupled Fermi gas as a powerful
platform for exploring Floquet band engineering and exotic
quantum matter [37–39].

The paper is structured as follows. In Sec. II, we present
our experimental setup and methods. In Sec. III, we discuss the
effective Hamiltonian of the driven system. Sections IV and V
show the observed Floquet band dispersion and the role of the
relative driving phase, respectively. Finally, Sec. VI includes
our concluding remarks.

II. EXPERIMENTAL SETUP

The experimental setup for generating 2D SOC is the same
as that in our previous experiment [33] (see also Appendices A
and B). As shown in Fig. 1(a), three hyperfine spin states of the
40K Fermi gas are coupled to the electronic excited states by
three far-detuned Raman lasers, with the corresponding two-
photon Raman coupling strengths between hyperfine states |j 〉
and |j ′〉 denoted by �jj ′ . The three Raman lasers propagate in
the xy plane [Fig. 1(b)], and thus the motion of the atoms
along the z direction is decoupled from the internal degrees
of freedom. The two-photon Raman detunings are modulated
as δ2 = δ2(0) + δm cos(ωt) and δ3 = δ3(0) + δm cos(ωt + φ0) by
varying the frequencies of the Raman lasers 2 and 3. Here,
δ2(0) (δ3(0)) corresponds to the original two-photon Raman
detuning between Raman lasers 1 and 2 (1 and 3) without
the fast modulation (i.e., δ1(0) is chosen as 0); φ0 is the initial
relative phase between two modulations, which could be tuned
arbitrarily in experiment.

The three spin states are selected within the 4 2S1/2 ground
electronic manifold with |1〉 = |F = 7/2,mF = 1/2〉, |2〉 =
|9/2,1/2〉, and |3〉 = |9/2,3/2〉, where (F,mF ) are the quan-
tum numbers for hyperfine spin states. The experiment starts
with a Fermi gas of N = 2 × 106 40K atoms in a crossed
1064 nm optical dipole trap at T/TF ≈ 0.3, where TF is
the Fermi temperature defined by TF = (6N )1/3h̄ω/kB and
ω̄ � 2π × 80 Hz labels the geometric trapping frequency. The
fermionic atoms are transferred into |9/2,5/2〉 as the initial
state via a rapid adiabatic passage induced by a rf field at 19.6
G. Then a homogeneous bias magnetic field along the z axis
(gravity direction) is ramped to B0 = 121.4 G by a pair of
coils operating in the Helmholtz configuration, splitting the
|3〉 and |2〉 Zeeman states by ∼38.7 MHz and the |1〉 and |2〉
states by 1293 MHz. The large Zeeman splitting would isolate
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FIG. 1. (a) Energy-level diagram of Fermi gases 40K. Three
hyperfine spin states are coupled with the electronic excited states
through three Raman lasers. The atoms are initially prepared in the
free reservoir spin state |9/2,5/2〉. (b) Configuration of three Raman
lasers in the xy plane. The detunings of the Raman lasers 2 and
3 are modulated as δ2(0) + δm cos(ωt) and δ3(0) + δm cos(ωt + φ0).
(c) Plot of the product of the effective Raman coupling strengths
η = �′

12�
′
13�

′
23 (scaled by η0 = �12�13�23) as a function of the

modulation parameter δm/ω. The background colors indicate the sign
of η/η0 which determines the position of the Dirac point. (d) Band
structures near the Dirac points for different modulation parameter
δm/ω. Only two bands that exhibit a Dirac point are shown, with the
lower, middle, and higher bands labeled by L, M, and H, respectively.
The relative phase φ0 = π/2 in (c) and (d).

these three hyperfine spin states from other ones in the Raman
transitions. We choose the one-photon recoil momentum h̄kr

and the recoil energy Er = h̄2k2
r /2m = h × 8.45 kHz as the

natural momentum and energy units. Here, kr = 2π/λ and λ is
the wavelength of the Raman lasers. Using the acoustic-optic
modulators (AOM), the frequencies of the Raman lasers 2 and 3
are modulated as f2(0) + δm2 cos(ωt) and f3(0) + δm3 cos(ωt +
φ0), respectively, yielding the detuning modulations discussed
above. The modulation frequency ω = 2π × 100 kHz is much
larger than the other relevant energy scales.

III. EFFECTIVE HAMILTONIAN

The time-dependent Hamiltonian is given by (we have
taken Er = h̄2k2

r /2m and h̄kr as the units for the energy and
momentum)

H =

⎛
⎜⎝

(k − q1)2 −�12
2 −�13

2

−�12
2 (k − q2)2 + δ2 −�23

2

−�13
2 −�23

2 (k − q3)2 + δ3

⎞
⎟⎠. (1)
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Here, h̄k = (h̄kx,h̄ky) denotes the momentum of atoms pro-
jected on the xy plane. The wave vectors are of three lasers
q1 = −kr êy , q2 = −kr êx , and q3 = kr êx .

The two time-varying detunings are modulated in the
following way:

δ2 = δ2(0) + δm2 cos(ωt + α), (2)

δ3 = δ3(0) + δm3 cos(ωt + α + φ0), (3)

where α is the unknown initial phase of the modulation and φ0

is the relative phase between the two modulations.
To eliminate the time dependence of the original

Hamiltonian, one can apply a time-dependent
unitary transformation of the following form: U =
diag(1,e−i

δm2
ω

sin(ωt+α),e−i
δm3
ω

sin(ωt+α+φ0)). The wave function
is then transformed as 
̃ = U−1
, while the Hamiltonian is
transformed as H̃ = U−1HU − iU−1 ∂U

∂t
, i.e.,

H̃ =

⎛
⎜⎜⎝

(k − q1)2 −�12
2 e−i

δm2
ω

sin(ωt+α) −�13
2 e−i

δm3
ω

sin(ωt+α+φ0)

−�12
2 ei

δm2
ω

sin(ωt+α) (k − q2)2 + δ2(0) −�23
2 ei

δm2
ω

sin(ωt+α)e−i
δm3
ω

sin(ωt+α+φ0)

−�13
2 ei

δm3
ω

sin(ωt+α+φ0) −�23
2 e−i

δm2
ω

sin(ωt+α)ei
δm3
ω

sin(ωt+α+φ0) (k − q3)2 + δ3(0)

⎞
⎟⎟⎠.

The effective Hamiltonian is defined as the time average of
H̃ over one driving period,

Heff = ω

2π

∫ 2π/ω

0
H̃ (t)dt

=

⎛
⎜⎜⎝

(k − q1)2 −�′
12
2 −�′

13
2

−�′
12
2 (k − q2)2 + δ2(0) −�′

23
2

−�′
13
2 −�′

23
2 (k − q3)2 + δ3(0)

⎞
⎟⎟⎠.

(4)

Therefore, the diagonal parts of the transformed Hamiltonian
do not change while the nondiagonal parts will be averaged
out, yielding static effective Raman couplings,

�′
12 = �12J0

(
δm2

ω

)
, (5)

�′
13 = �13J0

(
δm3

ω

)
, (6)

�′
23 = �23

[
J0

(
δm2

ω

)
J0

(
δm3

ω

)

+2
∞∑

n=1

Jn

(
δm2

ω

)
× Jn

(
δm3

ω

)
cos(nφ0)

]
. (7)

Here, Jn(x) is the nth-order Bessel function.
If δm2 = δm3 ≡ δm, then �′

23 can be simplified to

�′
23 = �23J0

[
2δm

ω
sin(φ0/2)

]
. (8)

Particularly, we find (i) �′
23 = �23 for φ0 = 0, (ii) �′

23 =
�23J0(

√
2δm/ω) for φ0 = π/2, and (iii) �′

23 = �23J0(2δm/ω)
for φ0 = π .

The effective Hamiltonian can also be derived based on a
different approach introduced in Ref. [39]. The equation is

Heff = H0 + 1

ω

∞∑
j=1

1

j
[V (j ),V (−j )]

+ 1

2ω2

∞∑
j

1

j 2
([[V (j ),H0],V (−j )]+H.c.)+O

(
1

ω3

)
, (9)

where H0 is the time-independent part of the original Hamil-
tonian and

V (±1) =

⎛
⎜⎝

0 0 0

0 δm2
2 e±iα 0

0 0 δm3
2 e±i(α+φ0)

⎞
⎟⎠ (10)

are the positive and negative frequency parts of the periodic
driving of δ2 and δ3. This method becomes cumbersome for
high-order terms. But for a high driving frequency limit, we
can safely keep the first several terms and find the approximate
effective Hamiltonian with good precision. Using the series
expansions for Bessel functions, it is easy to find that the
expression of the effective Raman coupling is the same (up
to the order of 1/ω2) as those derived in the previous method.

The effective 3 × 3 static Floquet Hamiltonian has three
dressed bands, and the position of the Dirac point is determined
by the sign of the quantity η/η0 where η = �′

12�
′
13�

′
23 and

η0 = �12�13�23. The Dirac point emerges at the crossing of
the lower (upper) two bands for negative (positive) η [33]. By
varying the modulating amplitude δm and relative phase φ0, we
can manipulate η [see Fig. 1(c)] and thus alter the topology of
the Floquet band structure [Fig. 1(d)]. For the measurement,
we use momentum-resolved spin-injection rf spectroscopy to
study the energy-momentum dispersions of the dressed states,
in which the atoms are driven from a free spin-polarized state
(initial state) into the SOC dressed ones ( final states).

IV. TOPOLOGY CHANGE OF FLOQUET BAND
DISPERSIONS

The wavelengths of the Raman lasers are tuned to 768.85 nm
between the D1 line and D2 line, making sgn(η/η0) = −1 for
the Raman coupling strengths in the absence of the modulation
δm = 0. Therefore, the two lower-energy bands touch at a Dirac
point which is observed in experiment, as shown in Fig. 2(a),
with the three band dispersions measured by spin-injection
rf spectroscopy. The band dispersions are also determined
theoretically by calculating the eigenenergy spectrum of the
effective static Floquet Hamiltonian and compared with the
experimental results. The Berry curvature diverges at the Dirac
point as a δ function, and the Berry phase is ±π along a closed
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FIG. 2. Observation of Floquet band topological change. The upper and middle panels represent theoretically calculated and experimentally
measured 2D Floquet band dispersions, respectively. The red dots represent the Dirac points. The lower panel represents corresponding 1D
dispersions along (a)–(d) ky = 0.05kr and (e) ky = −0.7kr , where the grayness of the lines indicates the population of the final state |3〉. The
modulation amplitudes of the Raman detunings are (a) δm/ω = 0, (b) 1.03, (c) 1.695, (d) 2.416, and (e) 3.3. Other parameters are �12 = 5.46Er ,
�13 = 4.62Er , �23 = −4.2Er , δ2(0) = −2.47Er , and δ3(0) = 0.93Er . The relative phase is φ0 = π/2. Note that the orientation of the kx axes is
different for a better view of the band structures.

loop around the Dirac point; therefore, the lower two bands are
topological, while the upper band is nontopological.

The role of the relative phase φ0 will be examined in the last
section. Without loss of generality in demonstrating the band
topology change, we first consider the periodic modulations
with the relative phase φ0 = π/2. By increasing δm/ω, the
three effective Raman coupling strengths decrease, and the
Dirac point moves in the momentum space, but still within
the lowest two bands for a small δm/ω [see Fig. 2(b)]. When
δm/ω ≈ 1.7, J0(

√
2δm/ω) = 0 and thus �′

23 = 0. The two spin
states |2〉 and |3〉 decouple and the Dirac point moves to infinity,
showing three Floquet bands which are gapped everywhere
[see Fig. 2(c)]. When δm/ω is slightly larger than 1.7, the Dirac
point reappears at the crossing of the two upper bands because
�′

23 changes sign and becomes positive. When δm/ω ≈ 2.4,
J0(δm/ω) = 0 and thus �′

12 = �′
13 = 0, the two spin states

|2〉 and |3〉 are coupled by an effective 1D SOC which does
not exhibit a Dirac point. For our experimental parameters,
the uncoupled free-particle dispersion band for spin state |1〉
intersects with the upper branch of the 1D SOC [Fig. 2(d)],
where a small gap between these two dispersions is opened
due to the finite driving frequency ω. By further increasing

δm/ω, �′
12 and �′

13 change sign simultaneously and thus the
Dirac point remains at the same crossing as of the two upper
dressed bands [see Fig. 2(e)]. Now the upper band initially
without topological properties becomes topological and the
lower band becomes nontopological.

We denote k0 = (k0
x,k

0
y) as the original position of the Dirac

point in momentum space in the absence of modulation. In
the presence of modulation, the position of the Dirac point is
shifted to a different place and there is an energy separation at
k0 between the two crossed bands. We characterize the three
band dispersions by measuring the energy separations between
the three dressed bands at the position of k0. In Fig. 3(a), we
plot these energy separations as a function of the modulation
parameter δm/ω. With the increase of δm/ω, the three effective
Raman coupling strengths are decreased, the energy separation
between the lower two bands at k0 is increased [blue line in
Fig. 3(a)], while the separation between the upper two bands is
decreased [red line in Fig. 3(a)]. The good agreement between
experiment and theory demonstrates the expected modulation
of the Floquet band dispersion.

In the presence of modulation, the current position of the
Dirac point k =(kx,ky) is different from k0. For different values
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FIG. 3. (a) Energy separations between three energy bands at k0,
i.e., the position of the Dirac point in the absence of modulation. The
symbols and solid lines correspond to experimental and theoretical
results, respectively. (b) Change of the position of the Dirac point
as a function of the modulation parameter δm/ω. The magenta and
cyan lines correspond to a theoretical plot of kx and ky of the Dirac
point. The symbols correspond to the positions of the experimentally
measured Dirac points. All other parameters are the same as Fig. 2.
The background colors in both panels indicate whether the Dirac point
exhibits at the crossing of the two lower (green) or the two higher
(yellow) bands.

of δm/ω, it can be computed theoretically from the effective
static Floquet Hamiltonian (4). In Fig. 3(b), we show the trajec-
tory of the current Dirac point as a function of the modulation
parameter δm/ω, together with the experimental measured
positions for three values of δm/ω shown in Fig. 2. Across
the points δm/ω = zn,0/

√
2 = 1.7,3.9,6.1,8.3, . . ., the Dirac

point moves to infinity [Fig. 2(c)] and then reappears at the
crossing of the other two dressed bands [Fig. 2(e)]. Here, zn,0

are the zeros of the Bessel function, J0(zn,0) = 0. On the con-
trary, at the two sides of δm/ω = 2.4,5.5,8.65,11.8, . . ., two of
the effective Raman couplings change sign simultaneously and
the position of the Dirac point does not change. Such observed
move of the topological Dirac point between the lower and
upper two bands with increasing δm/ω showcases the topology
change of the Floquet band structure of driven Fermi gases.

Before concluding this section, we remark that periodic
driving not only modifies the band structure drastically, but
also induces Floquet sidebands. The modulated Fermi gas
provides an ideal platform to map out the sidebands using
spin-injection rf spectroscopy. In our experiment, we are able
to detect the lowest-order sidebands which are separated from
the central bands by the driving frequency h̄ω = h × 100 kHz.
The characterization and understanding of the rf spectroscopy
signal for the sidebands is left for further investigation.

V. EFFECT OF RELATIVE PHASE

In the presence of multiple modulations of the system
parameters, the relative phase between these modulations plays
a key role in the driven dynamics and the energy dispersions
of the corresponding effective Hamiltonian are usually very
different. A prominent example is the comparison between the
circular and linear drivings of two components of a gauge field,
where the former one breaks the time-reversal symmetry and
may lead to the appearance of fascinating topological states
while the latter one does not [7,9]. Here the relative phase φ0

between the modulation of the two detunings can dramatically
change, �′

23 = J0[2δm sin(φ0/2)/ω] and thus affect the sign of
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FIG. 4. Effect of the initial relative phase φ0. The format and
parameters are the same as Fig. 3, except that (a),(b) φ0 = 0 and
(c),(d) φ0 = π , respectively. For φ0 = 0, the Raman coupling �23 is
not modulated and the Dirac point remains at the crossing of two
lower bands.

η/η0 and the position of the Dirac point. In Figs. 4(a) and 4(c),
we plot the band separations at the original Dirac point k0, simi-
lar to Fig. 3(a), but with φ0 = 0 and φ0 = π , respectively. The
corresponding Dirac-point positions are shown in Figs. 4(b)
and 4(d). When φ0 = 0, the Raman coupling �′

23 does not
change sign during the modulation. The simultaneous change
of the other two Raman coupling strengths does not reverse
the sign of the parameter η/η0, and therefore the Dirac point
always exhibits at the lower two bands [Fig. 4(b)]. However,
similar to the case of φ0 = π/2, η/η0 changes sign for φ0 = π ,
and thus the Dirac point moves from the lower two bands to
the upper two bands and vice versa [Fig. 4(d)] with increasing
modulation amplitude δm/ω.

VI. DISCUSSION

The motion of atoms along the z direction is decoupled
from that in the xy plane; therefore the rf spectroscopy only
detects the band dispersion in the xy plane although the
Fermi gas can be 3D. For a 2D (or a fixed kz plane in 3D)
Fermi gas, a topological band gap at the Dirac point can be
opened by varying the polarizations of the Raman lasers, which
induces an imaginary part for the Raman coupling strength
that corresponds to an effective perpendicular Zeeman field.
For example, in a recent experiment [35], an imaginary term
i� was generated for the Raman coupling �12. The exhibited
energy gap  at the position of the original Dirac point is
found to be proportional to � and the Chern number of the
two bands is given by ±sgn(��13�23) [40]. In the presence of
the same modulations that we explored, the real and imaginary
parts of the Raman coupling �12 change sign simultaneously.
Consequently, the Chern number of the two gapped bands
are given by ±sgn(η/η0) [∓sgn(η/η0)] if � is of the same
(opposite) sign with �12 before the modulations are applied.
This provides a useful guide to detect the topological properties
of the driven energy bands in the presence of an energy gap.
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Such topological band gaps support the existence of exotic
Majorana fermions in 2D and Weyl fermions in 3D in the
presence of pairing interactions, while the periodic driving
provides a knob to tune topological band regions, yielding
Floquet Majorana or Weyl fermions.

In conclusion, we have directly observed the topology
change of the full Floquet band structure in a periodically
driven quantum system using spin-injection rf spectroscopy.
Our model system, i.e., periodically driven Fermi gases with
2D SOC, provides an ideal platform for testing and under-
standing rich Floquet physics and band engineering exotic
quantum materials, as well as exploring interesting many-body
and few-body interacting physics in Floquet systems.
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APPENDIX A: SPIN-INJECTION SPECTROSCOPY

The Raman lasers are derived from a continuous-wave
Ti-sapphire single-frequency laser with the wavelength λ =
768.85 nm, which are ramped up linearly from zero to their
final intensity in 60 ms. Subsequently, a Gaussian-shape pulse
with 450 μs of the rf field is applied to drive atoms from
|9/2,5/2〉 to the final empty SOC state. Since the spin state
|9/2,5/2〉 is coupled to the state |3〉 via rf, spin-injection rf
spectroscopy will measure the weight of the |3〉 state and
obtain the energy dispersions with 2D SOC. At last, the Raman
lasers, the optical trap, and the magnetic field are switched off
abruptly, and atoms freely expand for 12 ms in a magnetic-field
gradient applied along the x axis. Absorption images are taken
along the z direction. By counting the number of atoms in
state |3〉 as a function of the momentum and the rf frequency
from the absorption image, the energy-band structure and the
position of the Dirac point can be determined.

FIG. 5. Schematic of generating the Raman lasers. λ/2: half-wave
plate; λ/4: quarter-wave plate; PBS: polarized beam splitter; AOM:
acousto-optic modulator.

APPENDIX B: THE CONFIGURATION OF
RAMAN LASERS

The Raman lasers are derived from a continuous-wave
Ti-sapphire single-frequency laser (M Squared lasers, SolsTiS)
with the wavelength 768.85 nm, as shown in Fig. 5. The
Raman laser 1 is sent through the two double-pass acousto-
optic modulators (AOM) (3200-124, Crystal Technology, Inc)
driven by two signal generators (N9310A, Agilent) and fre-
quency shifted −212.975 × 4 MHz. The Raman lasers 2
and 3 double pass through two AOM and are frequency
shifted +201.144 × 2 and +220.531 × 2 MHz, respectively.
In order to periodically drive the two-photon Raman detuning,
the Raman lasers 2 and 3 are frequency modulated, respec-
tively, with f2(0) + δm2 cos(ωt) and f3(0) + δm3 cos(ωt + φ0),
in which a signal generator (AFG3252 Textronix) generates
cos(ωt) and cos(ωt + φ0) signal outputs simultaneously to
externally modulate the frequencies of two signal generators
(N5183A, Agilent) for Raman lasers 2 and 3. The modulation
frequency response of the frequency modulation of the signal
generator (N5183A, Agilent) may reach 3 MHz and the
maximum deviation is about 10 MHz, which can satisfy the
experimental requirement.
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