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A single neutral atom is one of the most promising candidates to encode a quantum bit (qubit). In a real experiment, a
single neutral atom is always confined in a micro-sized far off-resonant optical trap (FORT). There are generally two types
of traps: red-detuned trap and blue-detuned trap. We experimentally compare the qubits encoded in “clock states” of single
cesium atoms confined separately in either 1064-nm red-detuned (bright) trap or 780-nm blue-detuned (dark) trap: both
traps have almost the same trap depth. A longer lifetime of 117 s and a longer coherence time of about 10 ms are achieved
in the dark trap. This provides a direct proof of the superiority of the dark trap over the bright trap. The measures to further
improve the coherence are discussed.
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1. Introduction
Quantum bits (qubits) encoded in single neutral atoms are

among the most promising candidates to realize quantum in-
formation processing.[1,2] Qubit is usually encoded in the hy-
perfine or Zeeman states of single atom. Thus, long lived sin-
gle atom with long coherence time will benefit the processing
of quantum information. In a real experiment, a single neu-
tral atom is usually confined in a micro-sized far off-resonant
optical trap (FORT).[3–9] To prolong the storage time of sin-
gle atom in FORT, the ultra-low pressure vacuum is requested
to suppress the collision with the background atoms. Periodic
cooling is adopted in the red-detuned trap to recool the atom
when it is heated by scattering the trap photons.[10] The co-
herence time of a confined atom is mainly limited by the in-
homogeneous mechanism due to the state energy fluctuations
associated with the movement of the atom in FORT.[11] The
trap potential of a FORT is formed by the locally distributed
ac Stark energy shift associated with the intensity distribu-
tion, thus there is a differential Stark shift between the two
qubit states due to unequal polarizabilities. Then, the move-
ment of the atom will induce the energy distance between
the two states to fluctuate, and thus dephase the quantum
state. To eliminate this inhomogeneous dephasing, researchers
have been searching for a trap with magic conditions where
the differential ac-Stark shifts between two interested atomic
states are independent of the intensity distribution of the trap

beam.[12–14] Although the magic condition can dramatically
extend the dephasing time, it can only be found for some spe-
cial quantum states and it is still a challenge to search for the
magic condition for many atomic species. Without consid-
ering the magic conditions, the dark trap (blue-detuned trap)
confines atom in its intensity minima with even zero excita-
tion and in principle is expected to possess longer storage time
and coherence time than bright trap (red-detuned trap) for all
the atomic species and states. In this paper, we experimentally
compare the qubits encoded in “clock states” of single cesium
atom confined in 1064-nm bright trap and 780-nm dark trap,
respectively, under almost the same trap depth. This provides
a direct proof of superiority of dark trap over bright trap.

2. Structures of trap and single atom loading
In our experiment, as shown in Fig. 1(a), the bright trap

is formed by deeply focusing a 1064-nm laser beam with a
beam diameter 12 mm through a high numerical aperture lens
group (NA = 0.29 and f = 36 mm). The waist size of the trap
is 2.0 µm, and the corresponding frequency detuning to ce-
sium D1 (D2) line is about −53 THz (−70 THz). Therefore,
by using 16-mW trap power, we can obtain a trap potential
of −kB× 0.63 mK, where kB is the Boltzmann constant. The
dark trap is formed by shining two parallel donut 780-nm laser
beams with orthogonal polarizations through another high nu-
merical aperture lens group (NA = 0.4 and f = 22.9 mm). The
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experimental setup is described in Fig. 1(b). The two beams
will intersect with each other at the lens focus where the beam
waist is located simultaneously. The donut beam is produced
by sending a Gaussian beam with a beam size of 1.83 mm
through a spiral phase plate (VL-209-M-Y-A, HOLO/OR),
and the beam is subsequently separated by a calcite beam dis-
placer into two parallel beams with orthogonal polarizations.
The distance between two donut beams is 4 mm. The trap pro-
file is measured at focus and is depicted in Fig. 2. We can see
that the crossed donut beams produce a dark spot surrounded
by high intensity.[15] Since the frequency detuning of 780-nm

trap beam to Cesium D1 (D2) line is about 49 THz (33 THz),
the high light intensity will form a potential barrier and make
the dark spot a trap. This bottle trap has a size of about 2.0 µm
along the radial directions and 11 µm along the axial direction.
By using 190 mW of trap power the minimum barrier height
is about kB×0.63 mK.

To load the atom from the precooled atom sample, both
of the traps are superposed with the atom ensembles in the
magneto-optical trap (MOT). The scattered photon by trapped
atom is collected by the same objective lens groups and is fi-
nally fed to single photon detectors (Figs. 1(a) and 1(b)).[6]
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Fig. 1. Experimental setups of bright trap (a) and dark trap (b). A TEM00 Gaussian beam or two orthogonal polarized donut beams are tightly
focused beam by a high numerical aperture lens (NA = 0.29 for bright trap and NA = 0.4 for dark trap) to produce the bright or dark trap. The traps
overlap exactly with MOT to load single atom from precooled atomic samples. Fluorescence photons scattered by trapped atom are collected by the
same lens group and separated from the FORT beam path by a dichromic mirror and finally feed to SPCM. HWP: half wave plate; NA: numerical
aperture; HR: high reflection; SPCM: single photon counting module; PC: personal computer.
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Fig. 2. (a) Measured intensity distribution of the dark trap by a CCD camera in x–y plane at positions of z = 2 µm, 12 µm, and 22 µm. (b) and (c)
Reconstructed intensity distribution in x–z and y–z planes.

Since the red trap has a negative potential, atoms can be
attracted to the trap center. So the red trap does not need
to be switched off during the atom loading phase. The trap
volume is a region where the trap potential on the border is
equal to the kinetic energy of the cold atoms kB ∗ TMOT.[3]

Atoms that have already been in this region can be effectively

trapped. The atomic ensemble in our MOT has a temperature
of 15 µK which gives a red trap volume of 681 µm3. The
atoms loaded into the trap finally accumulate in the trap bot-
tom where the light assistant 2-atom collision by the red de-
tuned MOT beam pushes atoms out of trap two by two, and
finally only zero or one atom is left.[16] Figure 3(a) shows the
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single atom signal loaded to the FORT, and Fig. 3(b) displays
the histogram which gives a single atom loading probability
around 60%, which is a little higher than the theoretical value
given in Refs. [16] and [17]. The loading probability could be
further increased by using light assistant collision induced by
blue-detuned beam or feedback technique.[18–20]

In contrast, the blue bottle trap can only trap the atom al-
ready within the trap volume which is set up by the high trap
barrier. The atom outside the trap region cannot enter into the
trap due to low kinetic energy. Thus, our 780-nm bottle trap
has a volume of 184 µm3. The trap needs to be switched off

at the beginning, and after the atom samples in MOT is ready,

the FORT is then switched on again to trap the atom. In order

to obtain a considerable loading probability the density of the

atom cloud needs to be as high as possible. Once two or more

atoms have been trapped, the light assistant two-atom colli-

sion will finally leave zero or one atom as the scenario in the

red trap. Figure 3(c) shows the single atoms’ signals in dark

trap. From the histogram shown in Fig. 3(d) we obtain a lower

loading efficiency of 40% in the dark trap than in the red trap

due to the low atom density in our experiment.
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Fig. 3. Typical signal from single atoms trapped in (a) bright and (c) dark trap, and ((b) and (d)) their corresponding histograms.

3. Atom heating in traps and atom storage time
For an ideal conservative trap, the atom loss due to the

parametric heating of the fluctuation of the trap and the stor-
age time of trapped atoms are determined only by collision
from background atoms in the vacuum chamber. The storage
time is determined by the vacuum pressure through[21]

τback =
(πmkBTb/8)1/2

σPb
, (1)

where m is the mass of trapped atom, kB is the Boltzmann
constant, Tb is the environment temperature, σ is the atom–
atom collisional cross section, and Pb is the background pres-
sure. In both of our experiments with bright and dark traps,
the background temperature is 300 K and our vacuum pres-
sure is about 2.66×10−9 Pa. Considering the cesium–cesium
collisional cross section σ ∼ 3.14× 10−13 cm2 a single atom
storage time of about 200 s for both traps is expected in the-
ory. The actual measurements of storage time for both of the
traps are shown in Fig. 4. We can see that the survival prob-
ability of atom in the bright trap is in a strange shape and the
overall storage time is much shorter than in dark trap because

of the parametric heating of the trap beam intensity noise. For
the blue-detuned trap the atom is trapped in the intensity min-
ima, so the parametric heating is suppressed. If the light inten-
sity in the trap center is low enough the atom storage time is
then mainly limited by the background collisions. Figure 4(b)
shows our measurement in the 780-nm bottle trap and the atom
survival lifetime is 118 s, which is still shorter than the theo-
retical expectation due to the residue parametric heating.

For those atoms confined in the intensity maxima in the
bright trap, parametric heating is the dominant reason for atom
loss. According to Ref. [22] the change of average energy 〈E〉
of atom in bright trap can be expressed as〈

Ė
〉
= Γε 〈E〉 , (2)

where Γε is the heating constant which is related to the inten-
sity noise of trap beam around the sidebands with twice the
atom’s oscillation frequency. The energy of the trapped atom
increases exponentially due to the parametric heating. Once
the atom energy exceeds the trap potential, the atom will es-
cape from the trap.

For an atom with temperature T the energy distribution
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obeys the Boltzmann statistics

p(E) =
1

2(kBT )3 E2e−E/kBT . (3)

There is a certain probability with which the atom energy ex-
ceeds the trap potential U and this part of atoms will escape
out of the trap. The Boltzmann distribution is then truncated
and the mean energy of the remaining atom will decrease due
to the loss of the high-energy atoms. If we take this effective
cooling effect into account, then equation (2) becomes,〈

Ė
〉
= Γε 〈E〉−β 〈E〉 , (4)

where β = ∆〈E〉/〈E〉 = (〈E〉−〈E ′〉)/〈E〉 is the effective
cooling rate. To calculate β we need to know the average en-
ergy 〈E ′〉 of the trapped atom after the high-energy atoms has
been lost. This is given by[22]

〈
E ′
〉
=

∫U
0 E3e−E/kBT dE∫U
0 E2e−E/kBT dE

= 3kBT
1−
(
1+η + 1

2 η2 + 1
6 η3

)
e−η

1−
(
1+η + 1

2 η2
)

e−η
, (5)

where η =U/kBT . Thus

β =
1
6 η3

eη −
(
1+η + 1

2 η2
) . (6)

Here we have used 〈E〉= 3kBT in a three-dimensional trap.
The dynamic of atom’s survival probability P then obeys

Ṗ = (1/τback +1/τheat)P, (7)

where 1/τback is the loss rate due to the background collision
and

1
τheat

= 1−
∫ U

0
P(E)dE =

(
1+η +

1
2

η
2
)

e−η (8)

is the atom loss rate due to parametric heating. From Eqs. (4)
and (7) we can obtain the dependence of temperature and
atom survival probability on storage time. The experimental
data of the survival probability and temperature versus stor-
age time, the corresponding theoretical fittings are shown in
Fig. 4(a). The temperature is measured by release and re-
capture method.[23] We can see that the atom temperature
increases as storage time is extended. The temperature in-
creases exponentially at the beginning of storage as indicated
by Eq. (2), when the corresponding Boltzmann distribution of
atom kinetic energy mainly resides below the trap depth and
the atom loss due to the parametric heating can be neglected.
In this region, the atom loss is mainly caused by the collisions
of the trapped atoms with the background atoms. As the stor-
age time increases, the temperature of atom goes up further
and the truncation of Boltzmann distribution cannot be omit-
ted. The cooling effect then begins to work and the increase

of the atom temperature slows down. The process is strictly
described by Eqs. (4) and (3). The atom loss is then domi-
nated by the parametric heating. The overall storage time is
measured to be 27.8 s. This storage time can be improved by
cooling the atom periodically. The blue data points in Fig. 4(a)
are the results with 5-ms cooling in every 10 seconds after the
atom has been trapped in the red trap. The storage time is then
prolonged to 79.3 s.
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Fig. 4. Plots of storage time of single atom in (a) bright trap and (b) dark
trap. Red points and blue points in panel (a) are data with and without peri-
odic cooling, respectively. The red and blue curve are the theoretical fittings,
which give single atom lifetime of 27.8±1.2 s without periodic cooling and
79.3±5.6 s with periodic cooling, respectively. The inset in panel (a) shows
temperature of the atom versus storage time and the fitting. The measure-
ment of single atom lifetime in dark trap is shown in panel (b), which gives a
life time of 117.7±10.6 s. The data points are obtained by using the statistic
over more than 100 atom samples and the range of error bars shown here is
±σ , where σ denotes standard deviation.

4. Qubit decoherence
A single atom with a long storage time can be used as car-

rier of single qubit for quantum information processing and
quantum computation. The dephasing time of the qubit is
the most important factor for these applications. The coher-
ence time of the qubit encoded in single trapped neutral atom
is mainly limited by the variation of the differential ac Stark
shift between the two encoded states when atom oscillates in
the trap.[11] This dephasing mechanism is usually classified as
an inhomogeneous dephasing process. In our experiment, the
qubit is encoded in the cesium “clock states” with the nota-
tions |0〉 ≡ |F = 4,mF = 0〉 and |1〉 ≡ |F = 3,mF = 0〉. The
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qubit is firstly initialized to |0〉 and a resonant microwave with
a frequency of 9.2 GHz is used to drive the state to rotate. By
using a standard Ramsey’s interferometer the qubit coherence
time T2 can be precisely measured. Figure 5 shows the in-
terference signal on the time scale with atom trapped in the
bright trap (Fig. 5(a)) and dark trap (Fig. 5(b)) with tempera-
ture T = 15 µK, respectively. In the bright trap, T ∗2 = 4.9 ms,
which is consistent with a theoretical dephasing time[11]

T ∗2 = 0.97× 2}
(ωhfs/∆eff)× kBT

= 6.8 ms.

Here, ωhfs is the ground-state hyperfine splitting, ∆eff is the
effective detuning with D1 and D2 lines. By comparison, the
dephasing time is extended to 10.1 ms in the dark trap, which
is due to the low trap light and thus lower inhomogeneous de-
phasing than that of bright trap. In addition, the dephasing
time is still limited mainly by the motion of the atoms. When
the atoms are cooled to their vibrational ground state of the
trap potential, it is possible to obtain a longer coherence time.
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Fig. 5. Evolution of Ramsey fringe amplitude with time delay between two
π/2 pulses in (a) bright trap and (b) dark trap. Data points are obtained by
statistic of about 100 atom samples and range of error bars shown here is
±σ , where σ is standard deviation. Red curve denotes theoretical fitting
of cosine function with exponential decay, which gives a single qubit co-
herence time of 4.9± 1.2 ms in bright trap and 10.1± 1.0 ms in the dark
trap.

5. Conclusions and perspectives
In this work, we have experimentally compared the qubits

encoded in the “clock states” of single cesium atom confined
either in a 1064-nm bright trap or in a 780-nm dark trap: which
possess almost the same trap depth. Due to less heating effect,

the atom lifetime can be extended to hundred seconds in the
dark trap, which is longer than that in the bright trap. Life-
time is primarily limited by collisions of the trapped atoms
with the background hot atoms. The coherence time of single
qubit states in the dark trap is more than twice as long in the
bright trap. Recently, the magic condition for qubits encoded
in hyperfine state of an optically trapped atom has been found
theoretically and experimentally. In the magic trap, the inho-
mogeneous dephasing can be suppressed in the dark trap and
the coherence time for the clock state can be extended to hun-
dreds of ms.[24] Of course, to realize the magic condition, the
trap beam polarization, bias field, and other parameters of the
trap need to be accurately controlled. For a relatively simple
trap such as the setups shown here, the dark trap has obviously
more advantages for quantum information processing than the
bright trap.
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