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Chiral edge currents play an important role in characterizing topological matter. In atoms, they have been
observed at such a low temperature that the atomic motion can be measured. Here we report the first
experimental observation of chiral edge currents in atoms at room temperature. Staggered magnetic fluxes
are induced by the spatial phase difference between two standing-wave light fields, which couple atoms to
form a momentum-space zigzag superradiance lattice. The chiral edge currents are measured by comparing
the directional superradiant emissions of two timed Dicke states in the lattice. Our results pave the way for
simulating topological physics in hot atoms.
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The quantum Hall effect [1] reveals a topological class of
matter that is characterized by the Chern numbers of energy
bands [2]. The chiral edge currents located at the bounda-
ries of two bulk materials with different Chern numbers are
usually measured to investigate the band topology. The
chirality of the edge currents is featured by the locking
between the direction of the currents and the (pseudo)spin
states of the edge excitations [3,4]. The chirality is robust
against local perturbations and only changes when the
energy bands go through a topological transition. Since
the edges have a lower dimension than the bulk, the edge
currents provide a convenient platform to investigate
topological physics in a higher dimension, such as the
quantum Hall effect in four dimensions [5,6]. The chirality
of the edge currents persists even when a two-dimensional
lattice is reduced to quasi-one-dimensional ribbons [7],
which has been experimentally demonstrated with ultracold
fermions [8,9] and bosons [10,11]. In those experiments,
the chiral edge currents were measured with the atomic
motions and thus were only observed at a low temperature,
where the thermal motions are negligible.
Here we report the experimental observation of the

momentum-space chiral edge currents in a superradiance
lattice [12–14] of cesium atoms at room temperature.
The zigzag lattice that we have synthesized is similar to
the ladder structures in the experiments with cold atoms
[7,8,11] and is currently under intensive investigation
[15–18]. Different from the momentum-space lattices

characterized by the recoil momentum of cold atoms
[17,19], the superradiance lattice is a momentum-space
lattice composed by the timed Dicke states [20] [see
Eq. (3)], which are collective atomic excitations with phase
correlations. The phase correlations can be understood as
the momenta of the collective excitations, which have
directional superradiant light emissions when they satisfy
the phase-matching condition with a light mode [20]. A
remarkable advantage of our approach is that the edge
currents are observed at room temperature. Instead of
measuring the atomic motions [8–11], the chiral edge
currents are measured by comparing the directional light
emissions from two timed Dicke states. Our study has
substantially lowered the threshold of the experimental
observation of chiral edge currents in atoms.
To highlight the physics, we introduce our basic model

with Λ-type three-level atoms as shown in Fig. 1(a). An
excited state jbi and a metastable state jai are coupled by
two standing waves with different frequencies, i.e., a near-
resonant and a far-detuned standing wave with field
amplitude envelopes cosðkcxÞ and cosðkcxþ ϕ=2Þ, where
ϕ=2 is their spatial phase difference and kc is the x̂
component of the light wave vector. The detuning between
the two standing-wave coupling fields is small enough
such that the difference between the amplitudes of their
wave vectors kc can be neglected. A probe field couples
the ground state jci to jbi. The Hamiltonian is (we set
ℏ ¼ 1)
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where Δc ¼ Δc0 þ 4κ with Δc0 ¼ νc − ωba being the
detuning of the near-resonant coupling field frequency
νc from the atomic transition between jbi and jai. ωba is the
bare transition frequency and 4κ is a spatially homogeneous
Stark shift induced by the far-detuned coupling fields,
which also induce a spatially periodic Stark shift
2κ cosð2kcxþ ϕÞ. Here, κ ¼ Ω2

f=Δf, with Ωf and Δf ¼
νf − ωba being the Rabi frequency and detuning of each
plane wave component of the far-detuned coupling field.
Δp ¼ νp − ωbc is the detuning of the probe field frequency
νp from the atomic transition frequency ωbc between jbi
and jci. Ω is the Rabi frequency of each plane wave
component of the near-resonant coupling field. kp is the x̂
component of the probe field wave vector and xm is the
x̂-axis coordinate of the mth atom. The derivation of the
Hamiltonian in Eq. (1) can be found in the Supplemental
Material [21].
By introducing collective atomic excitation

operators b̂†j ¼ 1=
ffiffiffiffi
N

p P
me

iðkpþ2jkcÞxm jbmihcmj and â†j ¼
1=

ffiffiffiffi
N

p P
me

i½kpþð2j−1Þkc�xm jamihcmj, we transform the
Hamiltonian to momentum space, H ¼ Hs þHp, where

Hs ¼
X

j

Δcðâ†j âj − b̂†j b̂jÞ=2þ
X

j

½Ωðâ†j b̂j þ â†j b̂j−1Þ
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and Hp ¼ ffiffiffiffi
N

p
Ωpðb̂†0e−i½Δp−ðνc−ωbaÞ=2�t þ H:c:Þ. With the

condition that Ω ≫ Ωp, most of the atoms are in the

ground state jci, and â†j and b̂†j are approximately bosonic
creation operators [12,23]. For single excitations, Eq. (2) is
a Hamiltonian of a tight-binding superradiance lattice
composed by timed Dicke states,

jBji≡ b̂†j jGi¼
1ffiffiffiffi
N

p
X

m

eiðkpþ2jkcÞxm jc1;…;bj;…;cNi; ð3Þ

and jAji≡â†j jGi, with jGi¼jc1;c2;…;cNi being the ground
state. The timed Dicke states jBji and jAji are phase-
correlated collective excited states that contain a single
excitation. The term “timed” indicates the phase correlations
that show the timing of the excitations in the original scheme
of Scully et al. [20]. For more excitations, as long as the
excitation number is much less than the atomic number and
there is no interaction between atoms, the physics remains
the same due to the bosonic nature of the excitations.
Each up and down triangle encloses an effective mag-

netic flux ϕ and π − ϕ, respectively, as shown in Fig. 2(a).
We diagonalize Hs in real space,

Hs ¼ hn · σ; ð4Þ

where n ¼ ðhxx̂þ hzẑÞ=h, with hx ¼ 2Ω cosðkcxÞ, hz ¼
Δc=2þ 2κ cosð2kcxþ ϕÞ, and h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2z þ h2x

p
. σ ¼P

j¼x;y;zσ
jĵ is the vector of the Pauli matrices of the

pseudo-spin-up state jai and pseudo-spin-down state jbi.
The dispersion relations in the upper and lower bands
are Eu¼h and El ¼ −h with the eigenstates jψui ¼
cosðθ=2Þjai þ sinðθ=2Þjbi and jψ li ¼ − sinðθ=2Þjai þ
cosðθ=2Þjbi, where θ is the polar angle of n. In Fig. 2(b),
we plot the dispersion (eigenenergy as a function of the
position) with the “spin texture” hσzi denoted by the color.
An interesting correlation between the dispersion and hσzi
can be easily noticed from the case when ϕ ¼ π=2. The
eigenstates that have a positive (negative) dispersion con-
centrate on the jai (jbi) edge.
The evolution of the momentum is determined by the

dispersion relation in Fig. 2(b), ∂p=∂t ¼ −∂E=∂x [12]. For
example, when ϕ ¼ π=2 and near the zero eigenenergy, the
momentum of an excitation created on the jbi sublattice
increases with time (note the negative derivative of the red
line), while on the jai sublattice the momentum decreases.
This is the essence of chiral edge currents; i.e., excitations
on different edges or with different spin states move in
opposite directions. To quantitatively clarify this feature,
we define the chiral edge currents on the jbi sublattice
as [7]

JbðEÞ ¼ −
X

i¼u;l

Z
dxδðEi − EÞjhψ ijbij2

∂Ei

∂x ; ð5Þ

where δðEi − EÞ is the Dirac delta function. JbðEÞ
characterizes the dynamics of the total momentum of

(a) (b)

FIG. 1. Schematic configuration of the experiment. (a) Atomic
levels and the near-resonant and far-detuned standing-wave
coupling fields with a relative spatial phase difference ϕ=2.
(b) The configuration of the lasers. The probe and its reflected
fields (purple), the far-detuned (blue) and near-resonant (red)
standing-wave coupling fields form a box configuration in order
to satisfy the phase-matching condition.
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excitations with energy E on the jbi sublattice. We can
define a similar quantity for the jai sublattice. However, we
only focus on JbðEÞ since the probe field couples atoms to
the jbi state. In Fig. 2(c), we notice that the sign of JbðEÞ
does not change with E for a fixed ϕ. The sign becomes
negative when ϕ > π (see the Supplemental Material [21]).
To generate JbðEÞ, we apply a weak probe field with

detuning Δp ¼ Eþ ðνc − ωbaÞ=2 to pump the atoms from
the ground state to the state jB0i. The momentum of the
excitation moves in the direction determined by the sign
of JbðEÞ and is finally balanced by the decoherence. In
the steady state, the population distribution is plotted in
Fig. 2(d). We define βj as the probability amplitude of the
state jBji. For ϕ ¼ 0, the distribution of jβjj2 is symmetric
on the two sides of jB0i, in contrast to the asymmetric
distribution when ϕ ¼ π=4 and π=2, where the population
is biased to j > 0 due to a positive JbðEÞ.

In the experiment, we detect the superradiant emissions of
two specific timed Dicke states to show the edge currents.
The timed Dicke states with a phase correlation that
matches the wave vectors of the light in the medium, i.e.,
jkp þ 2jkcj ≈ jkpj, have directional superradiant emissions
[20]. In the current scheme where jai and jci are nearly
degenerate, the timedDicke state jB−1i (or jBþ1i) is the only
superradiant state besides jB0i for a probe light incident
alongþx̂ (or−x̂). The radiation from these two superradiant
states can be considered as the reflections of the probe fields.
We define R� as the reflectivities of the probe fields incident
along the �x̂ axis. The relationship between R� and β�1 is
(see the Supplemental Material [21])

Rþ
R−

¼ jβ−1j2
jβþ1j2

: ð6Þ

This relation is independent of the density of the atoms, the
length of the vapor cell, and the phase mismatch.
We have used the D1 line of cesium atoms in the

experiment: jai ¼ j62S1=2; F ¼ 3i, jbi ¼ j62P1=2; F ¼ 4i,
and jci ¼ j62S1=2; F ¼ 4i (see Supplemental Material
[21]). Typical experimental results are shown in Fig. 3.
The reflection spectra depend on the phase ϕ. Only when
ϕ ¼ 0 and π, we observe Rþ ¼ R−. For 0 < ϕ < π, we
observe Rþ < R−, which indicates a larger population in
jBþ1i than in jB−1i, resulted from an edge current propa-
gating along þx̂. In contrast, we observe Rþ > R− for
π < ϕ < 2π, which indicates an edge current along −x̂.
The difference R− − Rþ demonstrates the overall edge
current J̄b ¼

R
dEJbðEÞ=2hmax with hmax being the maxi-

mum eigenenergy, as shown in Fig. 3(b).
In the following, we analyze the robustness of the edge

currents against thermal motions. From Fig. 3(a), we see
that the reflection spectra are not Doppler broadened. The
nonzero region of the spectra coincides with the energy
bands of the superradiance lattice. Their scales are both
around 30 MHz. This feature of standing-wave coupled
electromagnetically induced transparency was already
found by Feldman and Feld in 1972 [24]. To understand
this, we notice that the atoms that have a Doppler shift
larger than the bandwidth are out of resonance with the
probe field no matter their positions, such that they cannot
be excited. For atoms with Doppler shift smaller than the
lattice bandwidth, they move in the real-space Brillouin
zone and their contribution to the edge currents needs
to be averaged with their positions. The chiral edge
currents induce a difference between the two reflectivities,
Rd ≡ R− − Rþ ∝ jhβþ1ij2 − jhβ−1ij2, where hi is the aver-
age over the Doppler shifts due to the thermal motions of
the atoms. To quantify the effect of the chiral edge currents
on the whole reflection spectra, we take an average of Rd,

R̄d ¼
1

F

Z
RddΔp; ð7Þ
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FIG. 2. Band structure and chiral edge currents of super-
radiance lattices with different magnetic fluxes. (a) The tight-
binding lattice of the Hamiltonian Hs in Eq. (2). The red and blue
arrows show the phase factors ϕ attached with the corresponding
transitions. The total phases enclosed by the loop transitions in
the up and down triangles are ϕ and π − ϕ, respectively. (b) The
dispersion relation according to Eq. (4) with ϕ ¼ 0, π=4, and π=2.
The color shows the hσzi of eigenstates and indicates which edge
the eigenstates mainly locate on. (c) JbðEÞ in Eq. (5) for ϕ ¼ 0
(red line), π=4 (blue line), and π=2 (green line). (d) The steady
state distribution of the population jβjj2 in the jbi sublattice with
a probe field pumping the atoms to the site j ¼ 0. The points are
simply connected for clarity. The decoherence rates of states jbi
and jai are γbc ¼ 1 and γac ¼ 0.1. The probe detuning Δp ¼ 0.
Ω ¼ 1, κ ¼ 1, andΔc ¼ 0. For ϕ ¼ 0 and π=4, the lattice can still
be excited in the gap (Δp ¼ 0) due to a finite γbc.
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where F ¼ 40 MHz is the frequency range of an integra-
tion from −30 to 10 MHz in the reflection spectra. In Fig. 4,
we show the experimental data and numerical simulation
of R̄d as functions of Δc and ϕ. For an on-site potential
difference Δc ≈ 0, R̄d is approximately a sinusoidal func-
tion of the phase ϕ. This means our method can be used to
measure a phase difference between two standing waves.
For Δc larger than the bandwidth, the interedge transitions
are inhibited and the effect of the synthetic magnetic field
diminishes due to the inefficient loop transitions. As a
result, R̄d decreases rapidly to zero when Δc increases. The
results in Fig. 4 can be understood as the phase diagram
of an extended Haldane model [7], and its relation to the
dynamic classification of topological phases [25] will be
discussed elsewhere.
The results reported here are substantially different from

the temperature-independent edge currents in the photonic
lattices [26–31], where the propagation of the photons
governed by the Maxwell equations is made analogous to
the Schrödinger equation [32]. The edge states there are
photonic states rather than atomic states. The temperature
has no influence on the photons. In our current study, the
topological bands are for the atoms and they intrinsically
obey the Schrödinger equation. The thermal motions of
the atoms make a convenient average of the edge currents.
In addition, our lattice is in momentum space, in contrast to
the real-space topological photonic lattices. Although the
edge currents are detected by light in our experiment, they
are currents of collective excitations of atoms in momentum
space, not light in real space.
On the other hand, our results are closely related to the

spin-orbit coupled system [33,34] and the momentum-space

lattice [17,19] in cold atoms, with the difference that the
momentum is represented by the phase correlation of the
collective excitation, instead of the recoil momentum, which
is negligible in our study.Anextensionof ourmodel to higher
dimensions [13] can be used to simulate the Haldane model
[35,36] and the two-dimensional spin-orbit coupling [33,34].
By using Rydberg states [37,38] we can introduce inter-
actions between the excitations and study the many-body
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FIG. 3. Chiral edge currents demonstrated by the reflection spectra. (a) The reflectivities Rþ (red lines) and R− (blue lines) with
different phases. (b) R− − Rþ at the center of the spectrum Δp ¼ −11ð�1Þ MHz (similar results at other detunings) versus the phase ϕ
(dots with error bars, experimental results of ten sets of data; blue line, numerical simulation), compared with the overall chiral edge
current J̄b (red line). The power of each plane wave component of the near-resonant coupling field is 6.5 mW with an effective Rabi
frequency Ω ¼ 5.5 MHz. The power of each plane wave component of the far-detuned coupling field is 120 mW with an effective Rabi
frequency Ωf ¼ 33.3 MHz and a detuning Δf ¼ 200 MHz. κ ¼ 5.5 MHz. Δc ¼ 1.0 MHz. The power of each probe beam is 20 μW.
We have used γbc ¼ 2.3 MHz and γac ¼ 0.95 MHz in the numerical simulation. The differences between the simulation and experiment
are attributed to slight asymmetry in the optical alignment, an average of ϕ along the vapor cell (Δϕ ≈ 0.05π), and the Gaussian rather
than plane wave profiles of the coupling fields.

0.036

0

0.036

0.037

0

0.037

/ 20 3 / 2 2

2

0

4

c

2

4

2

0

4

2

4

Rd

c
Rd

(a)

(b)

FIG. 4. Averaged difference between the two reflectivities in
Eq. (7). (a) Experimental data. (b) Numerical simulation. The
parameters are the same as in Fig. 3.

PHYSICAL REVIEW LETTERS 122, 023601 (2019)

023601-4



effect in flux lattices [39]. An interesting connection of our
results can also be made to the unidirectional reflectionless
(invisible) photonic structures [40–43], such as the parity-
time symmetric materials [44]. We have observed that under
certain conditions one of the two reflectivities is nearly
zero while the other is big. Another observation is that the
transmissions of the probe fields in the two opposite
directions are the same, although the transmissions are phase
dependent. This is because our system does not break the
time-reversal symmetry. It is interesting to note that an
effective magnetic field in momentum space does not result
in optical nonreciprocity, while an effective electric field in
momentum space can break the time-reversal symmetry and
induce optical nonreciprocity [45]. Our study provides a new
way to measure the spatial relative phase between two light
fields that have different frequencies. The phase information
is converted to intensity signals. This can be used in phase-
contrast microscopy.
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