当前位置:首页 > 实验室 > 原子系综量子相干效应实验室
实验室简介

原子系综量子相干效应实验室主要从事的工作有:

1.进行多原子亚系综量子存储及光量子界面的研究工作,开展量子记忆 Controlled-NOT gate研究及确定性单光子产生与高效光量子界面的研究。

2.开展远距离两原子系综确定性纠缠产生的研究。

3.采用手性光学腔增强光-原子耦合,进行高速光-原子量子关联(纠缠)的研究。


项目资助情况:

1. 国家重点研发计划, 基于光场的混合型量子通信网络研究(2016YFA0301400)

2. 国家自然科学基金, 面上项目, 自发参量下转换产生的偏振纠缠光子对长寿命量子存储  11475109

3. 国家自然科学基金, 面上项目, 热原子系综中光场连续变量量子记忆11274211)

4. 国家自然科学基金,青年科学基金项目,具有长寿命量子记忆的光与原子纠缠源11604191)

5. 山西省应用基础研究计划,冷原子系综中长寿命高效率的实验研究201601D2020007)

6. 国家杰出青年科学基金:“非经典光场产生与应用”60325414)

7. 国家自然科学基金:“利用冷原子 EIT 中的四波混频效应在光学腔内实现光子纠缠”60578059)

8. 国家重大科学研究计划课题:“实现连续变量纠缠纯化和光与原子量子接口”2010CB923103)

9. 国家自然科学基金青年项目:“多能级原子系综中双通道自旋极化干涉效应的实验研究”10904086)


最新工作

最新工作


Authors:无



We demonstrate the heralded entanglement distribution between atomic-ensemble-based memories via temporally multiplexed scheme. A train of 12 write pulses in time is applied to a cloud of cold atoms along different directions, which generates temporally multiplexed pairs of Stokes photons and spin waves via DLCZ processes. The Stokes fields propagating in the two spatial modes, which are paired with two spin waves are combined to perform a single-photon Bell-state measurement. A successful detection projects the two spin waves into a single-excitation entanglement, which represents entanglement distribution in an elementary link. Compared with single-mode storage scheme, the temporally multiplexed scheme gives rise to a 11.8-fold increase in entanglement generation rate. By using cavity-enhanced scheme, spin waves stored in the atoms are retrieved on demand and the retrieval efficiencies are up to 70%, which is beneficial for the subsequent entanglement swapping between adjacent links.

Laser & Photonics Reviews, 2300825 (2024)



Here, we experimentally demonstrate entanglement swapping between different spatial modes for a cold-atom-ensemble quantum memory via Duan-Lukin-Cirac-Zoller scheme. With a cloud of cold atoms inserted in a cavity, we produce non-classically-correlated spin-wave-photon pairs in 12 spatial modes. We then prepare two entangled pairs of spin-wave modes through memory multiplexing. Via single-photon Bell-state measurement on retrieved fields from two spin-wave modes, we project the two remaining modes never entangled previously into an entangled state with a measured concurrence of C=0.0124±0.0030. The successful probability of entanglement swapping in our scheme is increased by three times, compared with that in the scheme without memory multiplexing. Our presented work shows that the generation of entanglement (C > 0) between the remaining spin-wave modes requires the average cross-correlation function of the spin-wave-photon pairs more than 30 . This presented work represents a significant step toward practical quantum repeaters.

Optica 12, 274-280 (2025)