申恒 教授 研究组负责人

离子阱量子计算与模拟实验室主要从事基于囚禁离子阵列体系实现大规模量子计算与量子模拟的研究。作为目前两种被广泛认可的量子计算体系之一,离子阱具有相干寿命长,逻辑操作保真度高的优势,是目前量子纠缠比特数目的纪录保持者(可有效实现20个量子比特的量子纠缠)。同时由于离子本身带电,可以通过利用微纳加工技术实现集成电极芯片,进而实现超大规模量子计算体系。我们主要研究集中在量子化学模拟,即分子合成能量计算、量子多体物理模拟以及拓扑量子计算。同时,实验室正加速开展二维离子芯片的开发,为实现大规模量子计算做技术准备。

研究方向:

离子阱量子计算与模拟;基于自旋压缩的量子精密测量;基于金刚石NV色心的量子模拟与测量;混合量子系统操控

项目基金支持:

国家重点研发计划-“基于自旋体系量子增强磁力计的研究”2020YFA0309400 2020.12-2025.11

英国皇家学会Newton International Fellowship Alumni follow-on funding (AL201024) 2020.7-2022.6

个人简介:

      申恒,本科毕业于南开大学-天津大学合办光电子技术科学专业。 2015年在丹麦哥本哈根大学尼尔斯玻尔研究所获得博士学位。之后在奥地利因斯布鲁克国家科学院量子信息与量子光学中心从事基于离子阵列的量子模拟与计算实验的博士后研究,并于2017年获得英国皇家学会牛顿国际基金支持在牛津大学从事光力-原子混合系统的研究。以通信作者或第一作者在国际著名刊物发表多篇论文,包括自然主刊,自然物理及物理评论快报等。研究方向包括量子模拟与计算、量子精密测量及新型量子材料等。

发表论文


共同第一作者标注#号,通讯作者(包括共同通讯)*号标注。

1. Spin squeezing of 1011 atoms by prediction and retrodiction measurements, Han Bao, Junlei Duan, Shenchao Jin, Xingda Lu, Pengxiong Li, Weizhi Qu, Mingfeng Wang, Irina Novikova, Eugeniy E. Mikhailov, Kai-Feng Zhao, Klaus Mølmer*, Heng Shen*, and Yanhong Xiao*, Nature 581, 159-163 (2020).

2. Retrodiction beyond the Heisenberg uncertainty relation, Han Bao, Shenchao Jin, Junlei Duan, Suotang Jia, Klaus Mølmer*, Heng Shen*, and Yanhong Xiao*, Nature Communications 11, 5658 (2020).

3. Reservoir-Mediated Quantum Correlations in Non-Hermitian Optical System, Wanxia Cao, Xingda Lu, Xin Meng, Jian Sun, Heng Shen*, and Yanhong Xiao*, Phys. Rev. Lett. 124, 030401 (2020).

4. Spatial Multiplexing of Squeezed Light by Coherence Diffusion, J. Sun, X. Zhang, W. Qu, E. E. Mikhailov, I. Novikova, H. Shen*, Y. Xiao*, Phys. Rev. Lett. 123, 203604 (2019).

5. Magnetostrictively Induced Stationary Entanglement between Two Microwave Fields, Mei Yu, Heng Shen and Jie Li, Phys. Rev. Lett. 124, 213604 (2020).

6. Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement, Georgios Vasilakis#, Heng Shen#, Kasper Jensen, Misha Balabas, Daniel Salart, Bing Chen, Eugene Simon Polzik, Nature Physics, 11, 389-492 (2015).

7. Deterministic quantum teleportation between distant atomic objects, H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, Heng Shen, T. Fernholz, E. S. Polzik, Nature Physics 9, 400-404 (2013).

8. Observation of nonanalyticies and entanglement generation at dynamical quantum phase transitions, P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, B. P. Lanyon, M. Heyl, R. Blatt, and C. F. Roos , Phys. Rev. Lett. 119, 080501 (2017). Web of Science高被引文章

9. Quantum state tomography of a single electron spin in diamond with Wigner function reconstruction. B. Chen, J. Geng, F. Zhou, L. Song, H. Shen*, N. Xu*, Appl. Phys. Lett. 114, 041102 (2019).

10. Detecting the out-of-time-order correlations of dynamical quantum phase transitions in a solid-state quantum simulator. Bing. Chen, Xianfei Hou, Feifei Zhou, Peng Qian, Heng Shen*, and Nanyang Xu, Appl. Phys. Lett. 116, 194002 (2020).

11. Spontaneous phase locking of mechanical multimodes in anti-parity-time optomechanics, Bing Chen, Yanqiang Guo, Heng Shen*, Optics Express 20, 28762 (2020).

12. Quantum communication network utilizing quadripartite entangled states of optical field, Heng Shen, Xiaolong Su, Xiaojun Jia and Changde Xie, Phys. Rev. A 80, 042320 (2009).

13. Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier, Yu Wang, Heng Shen, Xiaoli Jin, Xiaolong Su, Changde Xie, and Kunchi Peng, Opt. Exp. 18, 6149 (2010).

14. Toward demonstrating controlled-X operation based on continuous-variable four-partite cluster states and quantum teleporters, Yu Wang, Xiaolong Su, Heng Shen, Aihong Tan, Changde Xie, and Kunchi Peng, Phys. Rev. A 81, 022311 (2010).

15. Controlled-X gate with cache function for one-way quantum computation, Heng Shen, Kenan Qu, Weigang Zhang, Jing Jin, Phys. Rev. A 85, 032317 (2012).

16. Scalable photonic network architecture based on motional averaging in room temperature gas, J. Borregaard, M. Zugenmaier, J.M. Petersen, H. Shen, G. Vasilakis, K. Jensen, E.S. Polzik and A. S. Sorensen, Nature Communications, 7, 11356 (2016).

17. In-line polarization rotator based on the quantum-optical analogy, L. Chen, K. Qu, H. Shen, W. Zhang, K. Chou, Q. Liu, T. Yan, B. Wang, and S. Wang, Opt. Lett.41, 2113 (2016).

18. Enhancing squeezing and nonclassicality of light in atom-optomenchanical systems, Y. Guo, X. Guo, P. Li, H. Shen, J. Zhang, and T. Zhang, Ann. der. Phys. 41, 1800138 (2018).

19. Quantum chemistry calculations on a trapped-ion quantum simulator, C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen, P. Jurcevic, B. P. Lanyon, P. Love, R. Babbush, Alán Aspuru-Guzik, R. Blatt, and C. F. Roos, Phys. Rev. X 8, 031022 (2018). Web of Science高被引文章