基于贝叶斯方法的模型更新(A stochastic model updating using Bayesian method)

报告题目:基于贝叶斯方法的模型更新(A stochastic model updating using Bayesian method)

报告人:张勇 博士研究生(大连理工大学)

报告时间:2021年05月06日(周四)10:30-12:00

报告地点:光电所207会议室


摘要:

Due to uncertainties such as measurement noise and modelling errors, it is difficult to identify joint parameters of a bolted structure accurately with incomplete measured response data. In this talk, the dynamic equations of bolted assembled structures are derived using the substructure Component Model Synthesis  technique. The posterior probability density function of uncertain parameters of bolted joints is established by the Bayesian method,. In order to improve the efficiency of the stochastic model updating process, the pseudo excitation method is introduced to derive analytically the expressions of the gradient vector and the Hessian matrix for the optimization. I will also discuss the application of  multi-point excitation and Hamiltonian Monte Carlo .


报告人简介:

张勇,男,就读于大连理工大学工程力学系(2010-2014 本科;2014-2017;硕士;2017-2021 博士)。主要研究方向:随机振动,不确定性,贝叶斯模型更新。