李永民

       李永民,男,理学博士、教授,博士生导师,山西省三晋英才拔尖骨干人才、山西省中青年拔尖创新人才。主要研究方向:量子光学、量子信息。主持多项国家级科研项目,包括国家重点研发计划课题、科技创新 2030-“量子通信与量子计算机”重大项目子课题、国家自然科学基金项目、总装预研项目、教育部博士点基金;作为主要骨干参与承担国家重大科学研究计划项目和国家自然科学基金科学仪器基础研究专款等项目。已在Nature, Phys. Rev. Lett., Optica, npj quantum information, ACS photonics, Phys. Rev. Appl.等国内外重要学术期刊上发表SCI论文一百余篇,被引用两千余次。获美国发明专利2项,中国发明专利授权24项(已技术转让多项),软件著作权1项,山西省自然科学二等奖1项(排名1)。担任中国电子学会量子信息分会委员,中国密码学会量子密码专业委员会委员,全国量子计算与测量标准化技术委员会委员,Applied Sciences 编委。


课题组主页:山西大学光电研究所量子通讯实验室


近期承担的重要科研项目:

      1. 科技创新 2030-“量子通信与量子计算机”重大项目子课题,2021-2026

      2. 高性能相干态门限连续变量子秘密共享研究,国家自然科学基金,2022-2025

      3. 连续变量量子密钥分发,国家重点研发计划课题,2016-2021

      4. 基于氮化硅薄膜腔光力系统的非经典量子态制备与操控研究,国家自然科学基金,2018-2021


近期发表的重要学术论文:

  1. Experimental demonstration of multiparty quantum secret sharing and conference key agreement. npj Quantum Information 9, 92 (2023).

  2. High-performance long-distance discrete-modulation continuous-variable quantum key distribution. Optics Letters 48, 2953 (2023).

  3. Silicon photonics-integrated time-domain balanced homodyne detector for quantum tomography and quantum key distribution. New J. Phys. 25, 103030 (2023).

  4. Information reconciliation of continuous-variables quantum key distribution: principles, implementations and applications. EPJ Quantum Technology 10, 40 (2023).

  5. Accurate shot-noise-limited calibration of a time-domain balanced homodyne detector for continuous-variable quantum key distribution. J. Lightwave Technology 41, 5518 (2023).

  6. Hardware design and implementation of high-speed multidimensional reconciliation sendermodule in continuous-variable quantum key distribution. Quantum Information Processing 22, 362 (2023).

  7. Optical fiber strain sensor with high and tunable sensitivity. Rev. Sci. Instrum. 94, 115003 (2023).

  8. Microfiber optomechanical torsion sensor. Front. Phys. 11, 1147644 (2023).

  9. Continuous variable quantum key distribution with a shared partially characterized entangled source. Photon. Res. 11, 463 (2023).

10. Discrete-modulation continuous-variable quantum key distribution with a high key rate. New J. Phys. 25, 023019 (2023).

11. Ultrasensitive displacement measurement with nonlinear optomechanical coupling and squeezed light injection. J. Opt. Soc. Am. B 40, 604 (2023).

12. FPGA-Based Implementation of Multidimensional Reconciliation Encoding in Quantum Key Distribution. Entropy 25, 80 (2023).

13. Silicon photonics integrated dynamic polarization controller. Chin. Opt. Lett. 20, 041301 (2022).

14. In-fiber Michelson interferometric sensor fabricated by single CO2 laser pulse. Rev. Sci. Instrum. 93, 095004 (2022).

15. Experimental demonstration of continuous-variable measurement-device-independent quantum key distribution over optical fiber. Optica 9, 492 (2022).

16. Impact of homodyne receiver bandwidth and signal modulation patterns on the continuous-variable quantum key distribution. Opt. Express 30, 27912  (2022). 

17. An FPGA-Based LDPC Decoder With Ultra-Long Codes for Continuous-Variable Quantum Key Distribution. IEEE Access 99, 47687 (2021).

18. Efficient FPGA implementation of high-speed true random number generator. Rev. Sci. Instrum. 92, 024706 (2021).

19. Quantum random number generator with discarding-boundary-bin measurement and multi-interval sampling. Opt. Express 29, 12440 (2021).

20. Continuous-variable quantum key distribution under strong channel polarization disturbance. Phys. Rev. A 102, 032625 (2020).

21. Microfiber Mechanical Resonator for Optomechanics. ACS Photonics 7, 695 (2020).

22. High-Speed Post-Processing in Continuous-Variable Quantum Key Distribution Based on FPGA Implementation. J. Lightwave Technol. 38, 3935 (2020).

23. Impact of Four-Wave-Mixing Noise from Dense Wavelength-Division-Multiplexing Systems on Entangled-State Continuous-Variable Quantum key Distribution. Phys. Rev. Appl. 14, 024013 (2020).

24. Continuous-variable measurement-device-independent quantum key distribution with source-intensity errors. Phys. Rev. A 102, 022609 (2020).

25. Ultrashort all-fiber Fabry–Perot interferometer fabricated by a CO2 laser. Appl. Opt. 59, 8959 (2020).

26. Quantum entanglement via a controllable four-wave-mixing mechanism in an optomechanical system. Phys. Rev. A 100, 053842 (2019).

27. Generation of Gaussian-modulated entangled states for continuous variable quantum communication. Opt. Lett. 44, 3613 (2019).

28. Continuous-variable measurement-device-independent quantum key distribution using modulated squeezed states and optical amplifiers. Phys. Rev. A 99, 42309 (2019).

29. Realistic rate–distance limit of continuous-variable quantum key distribution. Opt. Express 27, 13372 (2019).

30. High-Gain and Narrow-Bandwidth Optical Amplifier via Optomechanical Four-Wave Mixing. Phys. Rev. Appl. 11, 064048 (2019).

31. Long-distance continuous-variable quantum key distribution with entangled states. Phys. Rev. Appl. 10, 064028 (2018).

32. Multimode four-wave mixing in an unresolved sideband optomechanical system. Phys. Rev. A 97, 033806 (2018).

33. High-visibility, high-strength, rapid-response, in-fiber optofluidic sensor. J. Lightwave Technol. 36, 2896 (2018).

34. Advantages of the coherent state compared with squeezed state in unidimensional continuous variable quantum key distribution. Quantum Inf. Process. 17, 344 (2018).

35. High-speed time-domain balanced homodyne detector for nanosecond optical field applications. J. Opt. Soc. Am. B 35, 481 (2018). 

36. Cascaded on-chip phonon shield for membrane microresonators. Appl. Opt. 57, 10436 (2018).

37. Security analysis of unidimensional continuous-variable quantum key distribution using uncertainty relations. Entropy 20, 157 (2018).

38. Compact 6 dB two-color continuous variable entangled source based on a single ring optical resonator. Appl. Sci. 8, 330 (2018).

39. Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback. Phys. Rev. A 96, 063811 (2017).

40. Finite-size analysis of unidimensional continuous-variable quantum key distribution under realistic conditions. Opt. Express 25, 27995 (2017).

41. High-visibility in-line fiber-optic optofluidic Fabry–Perot cavity. Appl. Phys. Lett. 111, 191102 (2017).

42. FPGA-Based Implementation of Size-Adaptive Privacy Amplification in Quantum Key Distribution. IEEE Photon. J. 9, 7600308 (2017).

43. Imperfect state preparation in continuous-variable quantum key distribution. Phys. Rev. A 96, 042312 (2017).

44. Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution. Phys. Rev. A 95, 062330 (2017).

45. Continuous variable quantum key distribution. Chin. Phys. B 26, 040303 (2017).

46. High-efficiency reconciliation for continuous variable quantum key distribution. Jpn. J. Appl. Phys. 56, 044401 (2017).

47. Suppression of phonon tunneling losses by microfiber strings for high-Q membrane microresonators. Appl. Phys. Lett. 109, 191903 (2016).

48. Highprecision auto-balance of the time-domain pulsed homodyne detector. Acta. Phys. Sin. 65, 100303 (2016).

49. Quantum analysis and experimental investigation of the nondegenerate optical parametric oscillator with unequally injected signal and idler. Phys. Rev. A 93, 013831 (2016).

50. Quantum frequency up-conversion of continuous variable entangled states. Appl. Phys. Lett. 107, 231109 (2015).

51. Generation of stable and high extinction ratio light pulses for continuous variable quantum key distribution. IEEE. J. Quantum. Electron 51, 5200206 (2015).

52. Efficient Suppression of Laser Excess Noise for Quantum Optomechanical System. Acta Photonica Sinica 44, 0827001 (2015).

53. Quantum frequency down-conversion of bright amplitude-squeezed states. Opt. Express 22, 24192 (2014).

54. Influence of guided acoustic wave Brillouin scattering on excess noise in fiber-based continuous variable quantum key distribution. J. Opt. Soc. Am. B 31, 2379 (2014).

55. Efficient Generation of Squeezed Light Based on MgO-Doped Periodically Poled LiNbO3. Chin. Phys. Lett. 31, 014208 (2014).

56. Four-state modulation continuous variable quantum key distribution over a 30-km fiber and analysis of excess noise. Chin. Phys. Lett. 30, 010305 (2013).

57. Continuous variable entanglement distribution for long-distance quantum communication. Chin. Phys. Lett. 30, 060302 (2013).

58. Robust generation of bright two-color entangled optical beams from a phase insensitive optical parametric amplifier. Appl. Phys. Lett. 100, 091112 (2012).

59. Ultrastable Fiber-Based Time-Domain Balanced Homodyne Detector for Quantum Communication. Chin. Phys. Lett. 29, 124202 (2012).

60. Tunable single-frequency intracavity frequency-doubly Ti:Sapphire laser around 461 nm. Chin. Phys. Lett. 28, 124205 (2011).

61. Generation and homodyne detection of continuous-variable entangled optical beams with a large wavelength difference. Phys. Rev. A 84, 020301(R) (2011).

62. High –efficiency continuously tunable single-frequency doubly resonant optical parametric oscillator. Appl. Opt. 50, 1477 (2011).

63. Generation of two-color continuous variable quantum entanglement at 0.8 and 1.5 mm. Appl. Phys. Lett. 97, 031107 (2010).

64. Efficient quantum memory for light. Nature 465, 1052 (2010).

65. Observation of two-color continuous variable quantum correlation at 0.8 and 1.5mm. J. Opt. Soc. Am. B 27, 842 (2010).

66. Quantum noise limited tunable single-frequency Nd:YLF/LBO laser at 526.5 nm. Appl. Opt. 48, 6475 (2009).

67. Influence of laser linewidth on external-cavity frequency doubling efficiency of a 1.56 mm master oscillator fiber power amplifier. Chin. Phys. B 18, 2324 (2009).

68. Continuous-wave, single-frequency intracavity singly resonant optical parametric oscillator at 1.5-mm wavelength. Chin. Opt. Lett. 7, 244 (2009).

69. Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO3. Appl. Phys. Lett. 92, 221102 (2008).

70. Noise suppression, linewidth narrowing of a master oscillator power amplifier at 1.56um and the second harmonic generation output at 780nm. Opt.Express 16, 11871 (2008).

71. Broadband and rapid tuning of an all-solid-state single-frequency Nd:YVO4 laser. Appl. Phys. B 90, 485 (2008).

72. Frequency conversion of continuous variable quantum states. J. Opt. Soc. Am. B 25, 269 (2008).

73. Generation of qudits and entangled qudits. Phys. Rev. A 77, 015802 (2008).

74. High-efficiency generation of a continuous-wave single-frequency 780 nm laser by external-cavity frequency doubling. Appl. Opt. 46, 3593 (2007).

75. Quantum correlation between fundamental and second-harmonic fields via second-harmonic generation. J. Opt. Soc. Am. B 24, 660 (2007).

76. Generation of amplitude squeezed green light from a high efficiency PPKTP frequency doubler. Opt. Commun. 265, 576 (2006).

77. Investigation of fundamental and second harmonic squeezed lights from a singly resonant PPKTP frequency doubler. J. Phys. B 39, 4163 (2006).

78. Generation of sub-Poisson Ian state with quantum high-and low-pass filters. Phys. Rev. A 72, 013822 (2005).

79. Single-mode approximation of parametric down-conversion. Phys.Rev. A 72, 06380 (2005).

80. Quantum optical implementation of quantum communication. China Commun, 68 (2005).

81. The response characteristic of a quantum high-pass/low-pass filer for quantum state preparation. J. Opt. B 7, 736 (2005).

82. New high-efficiency source of a three-photon W state and its full characterization using quantum state tomography. Phys. Rev. Lett. 95,150404 (2005).

83. Multi-photon entangled states from two-crystal geometry parametric down-conversion and their application in quantum teleportation. Opt. Commun. 244, 285 (2005).

84. Four-photon W state two-crystal geometry parametric down-conversion. Phys. Rev. A 70, 014301 (2004).

85. Four-photon entanglement from two-crystal geometry. Phys. Rev. A 69, 020302 (R) (2004).

86. Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion. Phys. Rev. A 70, 052308 (2004).

87. Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324, 420 (2004).


授权专利:


  1. 连续变量测量设备无关量子密钥分发系统及相位补偿方法,专利号ZL202111670733.2(2023)

  2. 一种基于时域脉冲平衡零拍探测方案的量子随机数产生器,专利号ZL202011614925.7(2023)

  3. 离散调制连续变量量子密钥分发态调制和密钥映射方法,专利号ZL202111456127.0(2022)

  4. 一种连续变量量子密钥分发系统中内生量子随机数的方法,专利号ZL202110215054.X(2022)

  5. 连续变量量子密钥分发系统脉冲光高速偏振锁定方法,专利号ZL201811406184.6(2022)

  6. 一种安全的高速随机数发生器及其结构优化方法,专利号ZL202011030711.5(2022)

  7Pulsed light high-speed polarization locking method of continuous-variable quantum key distribution system,专利号 US11057202B2 (2021)

  8. One-dimensional modulation continuous-variable quantum key distribution method,专利号US10911228B2 (2021)

  9. 一种适用于连续变量量子密钥分发的高速后处理方法,专利号ZL202010290504.7 (2021)

10. 一种输出方式灵活的新型偏压光电探测器,专利号ZL202022344246.4 (2021)

11. 适用于CVQKD系统脉冲光锁定级联MZ强度调制器偏置点的方法,专利号ZL201911010418.X (2020)

12. 一种适用于CVQKD系统的巴克码脉冲数据同步方法,专利号ZL201911011531.X (2020)

13. 高速脉冲时域平衡零拍探测装置,专利号 ZL201910926387.6 (2020)

14. 具有侧面微流体通道的全光纤开腔FP式光流体传感器,专利号 ZL201710882257.8 (2020)

15. 一种安全密钥速率计算方法及系统,专利号 ZL201810883479.6 (2020)

16. 一种实现一维调制连续变量量子密钥分发方法,专利号 ZL201710230519.2 (2019)

17. 信号调制连续变量纠缠源的制备装置,专利号 ZL201710602457.3 (2019)

18. 微结构光纤和石英毛细管的微形变高机械强度熔接方法,专利号 ZL201710256741.X (2019)

19. 一种高机械品质因子的薄膜谐振子实现装置,专利号 ZL2016110741294.2 (2018)

20. 可实现时域脉冲平衡零拍探测器自动平衡的控制装置,专利号 ZL201510411759.3 (2017)

21. 一种适用于连续变量量子密钥分发的脉冲发生器,专利号 ZL201410146307.2 (2017)

22. 锁定LiNbO3马赫-曾德尔调制器偏置工作点的方法,专利号 ZL201310185704.6 (2015)

23. 全光纤激光噪声过滤装置,专利号 ZL201310014845.1 (2015)

24. 连续变量量子态频率变换装置,专利号 ZL201210553640.6 (2015)

25. 一种激光时空模式改善装置,专利号 ZL201210142758.X (2014)

26. 双色可调谐连续变量纠缠态产生和探测装置,专利号ZL201110256115.3 (2013)

27. 全光纤脉冲平衡零拍探测装置,专利号 ZL201110188519.3 (2012)


专利转让:

1. 一种输出方式灵活的新型偏压光电探测器,专利号 ZL202022344246.4

2. 锁定LiNbO3马赫-曾德尔调制器偏置工作点的方法,专利号 ZL201310185704.6

3. 全光纤脉冲平衡零拍探测装置,专利号 ZL201110188519.3


软件著作权

一种输出连续变量量子密钥分发虚拟仿真实验软件V1.0,登记号2021SR0938764


获奖:

题目:“光场量子态的制备、操控及在量子通信中的应用”

获奖人:李永民,张宽收,冯晋霞

级别:   山西省自然科学二等奖


联系方式:

地址:山西省太原市坞城路92号,山西大学光电研究所

Tel:     0351-7011575

Email: yongmin@sxu.edu.cn